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Waiting systems

Now we turn our focus on waiting systems. These are the genuine queues where there is a

waiting room and the customers may have to wait for the service.

The basic elements of a (single server) queue are as shown in the figure.
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Double time axis (in a single server system)

customer n

service time of customer n (time it takes to discharge the work)

service requirement of customer n (the work required)

waiting time of customer n

Wn +𝑆n the total time spent in the system by customer n

time in system, sojourn time

(or 𝑡n) the interarrival time between customers n − 1 and n

the service rate or capacity of the server (also denoted by c or µ)

The service time depends on the
service requirement (work) and
the service rate: /C.X  S nn 

In telecommunication applications
the service may mean transmission
of a packet on the line.
Then the work may be measured
e.g. in units of kbit and the service
rate is measured in kbit/s.

By inspection, one sees that for FIFO 

  )A -  S (W  W 1nnn1n
where 0) max(x,  (x) 
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Queue length, unfinished work and virtual waiting time

(or 𝑄𝑡 or Lt number of customers in 

system (“number in system”, “queue length”) 

service time of customer n

(time to discharge the work)

unfinished work (volume of the work) in the 
queue at time t

virtual waiting time at time t

the real waiting time of customer n

the service rate or capacity of the server

(also denoted by c or µ)

• Virtual waiting time 𝑉𝑡 means the time which 
a customer would have to wait for service if 
the customer happened to arrive at time t (in 
a FIFO queue) VWT=random instance 
observer.

𝑉𝑡 is the time it takes to discharge the 
unfinished work in the queue, 

• In the case of Poisson arrivals the distribution of Wn is by the PASTA property the same
as the stationary distribution of            (view of arriving customer=view of random instance 
observer)

/C.X  V i.e., ,X ttt 

. V t
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The M/M/1 queue

Number of customers in an M/M/1 queue

By the method of a cut, one gets the balance condition

n 1-n or 1n  n where  /  (traffic intensity, load),

from which we get recursively

0n  n

The probability of an empty queue 0 is obtained from the normalization condition
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0 1/1
n

n  (the probability that the server (ant the queue) is empty

 1 probability that the server is busy = )

The queue length distribution of an M/M/1 queue, n},  P{N  n 
n

n  ) - (1    n = 0, 1, . . . distribution (starts from 0))(Geom0 
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(in order for the queue to be stable, we have to require < 1)

exponential
period of service

Poisson
Arrivals

 

n

𝜋0 is a prob. and we need to capture it and the equation captures it correctly

Note: view II shifted geometry

pX (i) = P{X = i} = (1 −p)ip i = 0,1,2, . . .

𝐺 𝑧 = 𝑝

𝑖=0

∞

1 − 𝑝 𝑖𝑧𝑖 = =
𝑝

1 − 1 − 𝑝 𝑧



The average number of customers in the system
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The tail probability: the probability that there are at 
least n customers in the system,
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Q: what is VAR[N]



Example.
• Router A sends 8 pakcets per second, on the

average, to router B.

• The mean size of a packet is 400 byte 
(exponentially distributed).

• The line speed is 64 kbit/s.

How many packets are there on the average in router A waiting for transmission or being
transmitted and what is the probability that the number is 10 or more?
The utilization of the line (server) is

0.4.  sbit   10bit/64 8  400  s 8  -13-1 

This can be also calculated in the form λ/μ, where

 packets/s 20  )bit/packet 80kbit/s/(40 64   packets/s, 8    => 0.4  8/20  / 

Thus E[N] = 0.4/(1 − 0.4) = 0.67.

The probability that the number of packets is 10 or more is .10  0.4 -410 
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8 packets /S



Sojourn and waiting times in the M/M/1 queue

Little’s result:

The average sojourn time (time in system)

The average waiting time
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Independence of the scheduling discipline

For the M/M/1-FIFO queue we have derived the queue length 

distribution

• This distribution is independent of the scheduling discipline (FIFO, 
LIFO, PS),

– all these scheduling disciplines lead to exactly the same balance 
equations (proof is left as an exercise)

• Thus also the mean time in system,                                         is 
independent of the discipline  (by Little’s result the mean time in 
system equals the mean queue length divided by λ )

• In the contrast, e.g. the distributions of W and T do depend on the 
discipline.

Note. The queue length distribution is not insensitive to the service 
time distribution in an M/M/1-FIFO queue. However, in LIFO and PS 
queues the insensitivity holds. 

.)1( n
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The distribution of the sojourn time
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Assume that an arriving customer finds N customers in the
system (including the customer in the server, if any).
By the memoryless property of the exponential distribution also the remaining service 
time of the customer in service (if any) is distributed as ).(~ Exp

The time T spent by a customer in the system consists of the time it takes to serve 
the customers ahead in the queue and the customer’s own service time


own

N

customers

N SSSST 121 ... 
   sum of (N + 1) rvs with Exp(μ) distribution
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equilibrium distribution of the queue length (starts from 0, to 
capture the customer in server),  PASTA! (distribution of N is 
previously obtained from the view of random instance observer
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The distribution of the sojourn time (continued)

The same result can be derived also by using the result for the Laplace transform of a 
random Sum.
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Note: view II shifted geometry

pX (i) = P{X = i} = (1 −p)ip i = 0,1,2, . . .

𝐺 𝑧 = 𝑝

𝑖=0

∞

1 − 𝑝 𝑖𝑧𝑖 = =
𝑝

1 − 1 − 𝑝 𝑧



Distribution of the waiting time

The waiting time W consists of the service times of the customers in the system upon 
the arrival
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,...1 NSSW 

where )Exp(~  Si  and N                                    (starts from 0) , distribution of N captures 
𝜋0, however, we need to take care of this case as it is not applicable
For waiting time in queue.

)1(~ 0 Geom

If N = 0 there are no terms in the sum and W = 0.
The tail distribution of W is derived by conditioning

}0{)0(}0{}{  NtWPNPNtWPtWP 


}0{ NP

}0{.  NtWP

By the memoryless property of the geometric distribution N conditioned on N > 0 is  
distributed as as (starts from 1))( Geom

Thus the sum NSS  ...1
conditioned on N > 0 is distributed precisely as

11 ...  NSS

before and obeys the distribution ).(  Exp
tetWP )(}{  

The waiting time is 0 with a finite probability P(W = 0) = 1 − P{W > 0} = .1 

This, of course, is equal to the empty queue probability P{N = 0}.



Finite queue: the M/M/1/K system

Let there be K system places (waiting room + server)

The equilibrium equations across the cuts are the same as before
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The only difference is in the normalization
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 Kn ,...,1,0 trunc. geom. distribution

• The probability K of state K is the probability that an arriving customer finds the
system full (“the buffer overflows”).
• When K = 1, we have a single server loss system ,
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The M/M/m queue (Erlang’s waiting system)

• m parallel servers

• Poisson arrivals

• Exponential service time distribution
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• The state transition diagram is, up to state m the same as in the loss system.
• Beyond that state, it is identical with the diagram of anM/M/1 queue where the 
capacity of the server is mμ.



The balance equations can again be written by using the method of a cut:
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The solution up to a constant factor             is0
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traffic intensity per server.

The probability          of state 0 is determined by the normalization condition0 ,1n n
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The probability that upon an arrival all servers are busy and the customer has to wait isqP

vu

v

m

m

m

m
amCP

m

mn mn

nm

nq





  






 )1(!

)(

!
),( 00






Erlang’s C formula
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The mean number of waiting customers qN
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The sum is of the same form as the mean queue length in an M/M/1 queue. Thus
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By Little’s result we obtain the mean waiting and sojourn times:
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The distribution of the waiting time
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When N  m the system behaves as an M/M/1 queue
with capacity .m
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Example 1
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A printer is attached to the LAN of the department. The printing jobs are assumed to  
with arrive a Poissonian intensity        and the actual printing times are assumed to obey 
the
distribution Exp(μ).



The capacity of the printer has become insufficient with regard to the increased load. 
In order to improve the printing service, there are three alternatives:

1. Replace the old printer by a new one twice as fast, i.e.
with service rate 2μ.

2. Add another similar printer (service rate μ) and divide
the users in two groups of equal size directing the works
in each group to their own printer. The arrival rate of
jobs to each printer is .2/
3. The same as alternative 2, but now there is a common
printer queue where all jobs are taken and the job at the
head of the queue is sent to whichever printer becomes
free first.



Example 1 (continued)
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Lut us compare the performance of the alternatives at different loads. As measure of 
performance we use the mean sojourn time of a job         (time in system, from the 
arrival of the printing job to the full completion of the job).

T

1. In this case we have an M/M/1 queue with parameters       and 2μ.






2


 2

1
.

1

1

2

1
1





T

2. Now we have two separate M/M/1 queues with parameters        /2 and μ.
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The load per server is the same as before. Now just everything happens two 
times slower (both arrivals and the service).

3. In the case of a common printing queue, an appropriate model is the M/M/2 
queue with parameters       and μ.
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Example 1: Summary of the comparison
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Take case 1 as the reference: calculate the sojourn
times in cases 2 and 3 in relation to that in case 1 

• Alternative 1, i.e. one fast printer is the best one.
• In alternative 2, the sojourn time is twice as long as in case 1.
• In case 3, the second printer does not help at all at low loads: each job is taken 
directly into the service (without waiting) but the actual printing takes twice the time as 
with the fast printer.
• At heavy loads, the mean sojourn time of case 3 is the same as in case 1 (in both cases 
it consists mainly of the waiting). Two slow printers fed by a common queue discharge 
the work in the queue as efficiently as one fast printer.
• This is not the case for the alternative 2. When the queues are separate, it is possible 
that one printer stays idle while there are jobs waiting in the queue for the other 
printer. This deteriorates the overall performance in such a way that also at high loads 
alternative 2 is on the average two times slower than alternative 1.



Example 2
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• A telephone switch is modelled as an M/M/m system (when all lines are busy, the 
callers are let to wait by signaling them the ring tone)
• How many lines (m) are needed that the probability that a caller has to wait longer 
than time             is less than 1 % ?maxt

0.01eP max)t--(m

q 
 

max

maxq

t

t)log(100P
m






is a function of m (monotonically decreasing); thus the inequality is still an implicit one.

It can be solved by trying sequentially values m = 1, 2, 3, . . . until the inequality is satisfied.

By letting the callers to wait for a free line for a while before blocking them, the number
of blocked calls can be reduced or, conversely, the load of the system can be increased in
comparison with a loss system with the same blocking probability.
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