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Definition of a CTMC

* For the continuous-time Markov chain {X(t) : t
> 0} with N states, the Markov property can be
written as

e PIX(s+t)=j | X(s) =i, X(u)=x(u), 0<u<s ]=
PIX(s+t)=j | X(s)=i],i,jES, 0<t<oo,

e and reflects the fact that the future state at
time s+t only depends on the current state at
times.



transition probabilities functions

 We consider the special case of stationary transition
probabilities functions (sometimes referred to as
homogeneous transition probabilities functions),
occurring when

PIX(s +t) =] | X(s)=i]=PIX(t) =j | X(0) = i]=P;;(t
for all statesi and j and for all timess>0and t > 0;

* P;;(t) is called stationary transition probabilities

i.e. the independence of s characterizes the stationarity.
and

P(t) = [P, (£)]

is called the transition probability matrix function
(TPMF).( a function of time compared to TPM)



Behavior of a CTMC

X (1) T,
kTt ..

Two major components:
T, =sojourn time In state I (random variable)

* p; = probability of moving to state | when leaving state I

> 1



Exponential holding time in states
of CTMC

* Proposition: T; is exponentially distributec

* Proof: By time homogeneity, we assume that
the process starts out in state i. For s 2 0 the
event {T. > s} is equivalent to the event {X(u) =
i for0<u<sh

* Similarly, for s, t 2 0 the event {T, > s+t} is
equivalent to the event {X(u) =iforO<u<s+

t}.




Exponential holding time in states
of CTMC

* Therefore,
P(T.>s+t|T,>s)
=P(X(u)=iforOsu<s+t|X(u)=iforO<u<s)
=P(X(u)=ifors<u<s+t|X(u)=iforO<u<s)
=P(X(u)=ifors<u<s+t|X(s)=i)
= P(X(u) =iforO<u<t|X(0)=1i)
= P(T. > t),



Exponential holding time in states
of CTMC

* where
- the second equality follows from the simple fact
that P(A N B|A) = P(B|A), where we let A = {X(u) =
iforO<u<sfand B={X(u)=ifors<u<s+t}].
- the third equality follows from the Markov
property.
- the fourth equality follows from time
homogeneity.
Therefore, the distribution of T, has the
memoryless property, which implies that it is
exponential.



Exponential holding time in states of CTMC

* Papoulis (4t ed) pages 775-776

T, ~the waiting time for a change of state for a Markov process X(t), given
that it is in state i at time O. if T, >s, then the process will be in the same
state i at time t +s as at t, and (being a Markov process) its subsequent
behavior is independent of s. Hence,

P{T.>s+t|T,>s}=P{T.>t} £ @;(t)

represents the probability that the event {P (T, > s + t} given that P {T, > s}.
But

@it +5)=P{T.>s+t}=P{T.>s + t,T, >s}=

P{T.>s+ t| T, >s} P{T, > s}= @; (t)p; (s)

Or

logp;(t + s)=loge;(t) +logyp; (s)

The only function satisfies above is either of the form ct (c=cte) or
unbounded form above. Thus

logp;(t) = —2;(t) P;(t)=P{T,>t}=e 4O  t>=0

Thus sojourn time has an exponential distribution for all Markov
processes



Chapman-Kolmogorov equations

 Lemma 1. (Chapman-Kolmogorov equations) For
alls>0and t>0,P; (s +t) =X P, (s)P,(t)

* Or in matrix notation P(s + t) = P(s)P(t)
* Proof

* We can compute P, (s + t) by considering all
possible places the chain could be at time s.

* We then condition and and uncondition, invoking
the Markov property to simplify the conditioning;
l.e.,

P;i(s +1t) = P(X(s +t) = j[X(0) = i)



Chapman-Kolmogorov equations

* Proof (cntd.)
=Zk P(X(s +t) = j,X(s) = k| X(0) = i)

Zk (X(s) = k|X(0) =i)P(X(s + t) = j|X(s) = k,X(0) =)
(conditioning on X(s)=k)
= 2k P(X(s) = k| X(0) = i)P(X(s + t) = j| X(s) = k)
(Markov property) (uncondition)
=Dk P. ((s)P;(t) (stationary transition probabilities)



Describing a CTMC

* ACTMC is well specified if we specify:
* (1) its initial probability distribution —
p(X(0) = i) for all states |

* (2)its transition probabilities - P, (t) for all
states i and j and positive times t.

* Thus we use these two elements to compute
the distribution of X(t) for each t,

P(X(t) =j) =X; P(X(0) =) P; ;(t)



Describing a CTMC

* Since the CTMC must be at any time in one of
the N states, the analogous of DTMC is, for
any state /

?,=1 Pi,j(t)=1



constructing a CTMC model- four

approaches(models)

for all four models:

the initial distribution are required and thus

we focus on specifying the model beyond the
initial distribution.

The four models are equivalent: you can get to
each from any of the others.

Even though these four approaches are
redundant, they are useful because they

together give a different more comprehensive
view of a CTMC.




constructing a CTMC (model 1 : DTMC with Exponential
Transition Times)

e For the DTMC with transition matrix P (looking at the
transition epochs of the CTMC thus p,=0), the transition

probabilities of the embedded chain
Pij = Al%r—r}o P{Xtsar = J|Xtqar # 1, Xy = 1}
P{Xtrar = J, Xeqar # UXe =1}

= lim _ _
At—0 P{Xiine # 01Xy =1}
( qg. .
Wy PN, e Xe) = X} = i, when Xi~Exp(A)
= 4 Zj di,; ! "
0 o
\ FJ

the second line numerator and denominator are divided by At, and defining

_ Pl Xerat = J, Xevar F UXerne = 1]
1ij = atSo At

I+ ]



constructing a CTMC (model 1 : DTMC with

Exponential Transition Times)
Markov process, transition rates q; ;

equilibrium probabilities T, o«
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Embedded Markov chain(EMC), transition probabilities p;;
equilibrium probabilities T, _a_
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constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

* For this DTMC (EMC) the steady state

probability vector is 1, the unique probability
vector satisfying the equation

n=mP (1)

* |nstead of having each transition take unit
time, now we assume that the time required
to make a transition from state / has an
exponential distribution with rate g,, and thus

mean 1/q, independent of the history before
reaching state i.



constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

* Relating the steady-state (stationary) probability vector
1t of the CTMC to steady state probability vector of
DTMC (EMC) i

7 — _(m/a)

J Zk (”k/qk)
* |ndeed, this first modelling approach corresponds to

treating the CTMC as a special case of a semi-Markov
process (SMP)

* We assume that there are no one-step transitions from

any state to itself in the DTMC ( no self-loop); i.e., we
assume that P;; = O for all i (we look at the chain at
transitions)

* this assumption is not critical,( see the third modelling)

(2) (1/4q; is life time in state i slide 18 )



constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

Markov processes have no self-loops and their state
transitions are characterized by a generator matrix, which
is analogous to a probability transition matrix. The
classification of states have analogous statements for
Markov processes where the probability transition matrix
is replaced by a generator matrix.

The generator matrix of a Markov process, denoted by Q,
has entries that are the rates at which the process jumps
from state to state. These entries are defined by

. P[X(t+7)=j|X(t)=i]
q;; = ll_r)r(l) T T] i

i =] (3)



constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

(We assume that the Markov process is time
homogeneous and thus that (3’) {g, = lim 220=XO=1 4 j} s
independent of t.)

The total rate out of state i is denoted by g;and equals
qi = Xj+iqi; (4)

The ho(ding time of state i is exponentially distributed
with rate g.

By definition, we set the diagonal entries of Q equal to
minus the total rate,

qii = —q; (5)

This implies that the row sums of matrix Q equal 0.




constructing a CTMC (model 1 : DTMC with Exponential
Transition Times)

* stationary probabilities in terms of the generator matrix.

Using the results of EMC in SMP (i.e. 7T, = % E,

Zkes T kLS
, 1 €S, ) and multiplying (2) by g;and summing yields
[and using (5”) g;; = —q; and ; = Zjil.njpj,, = Zjiinj—b_-’
slide 12]

Z_(;io(njq]'i/q]') _Zj;ti(njq]'i/q]')'l'niqii/qi

P o —
20 iqﬂ 2y (m,/ay) 2k (Ti/ 4,
L T E— [nel (8.65)]

Xk (m./q,)

* Rewriting in matrix form, shows that the stationary
probabilities of a Markov process satisfy T Q =0,

with the additional normalization requirement that ||l = 1.



constructing a CTMC (model 2 : Transition Rates

and ODE’s)

We look at the chain at any time ( so we need to
define zero-time transition probabilities, P;;(0) = 1
since there is no instant jump from a state)

let P(0) = I, where | is the identity matrix; i.e., we
set P;;(0) =1 for all i and we set P;,(0) =0
whenever i # J.

P(R)—1_ .

We define Q = limy, 4 — llmh\l,op(h)_P(O)

h

= P'(0+) (it is rate)
See Ross prob. Models 9t ed. ch 6 page 378



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* Thus the transition rate from state i to state j be
defined in terms of the derivatives:

_ P;ij(h)—P;;(0)  _, _dPyj(t)
Q= lim "SR —pr (04)= SU2 | (3)
i ()
. P;ji(h)—P;;(0 P;i(h 1 dP;i(t
=lim U] - BUER T (04)= U,

hlo h h
* in most treatments of CTMC’s instead of above, it
is common to assume that

P.(h)=Q;h+o(h)ashl0ifj#i (4) and
P.i(h)-1=Q;h+o(h)ash0, (5)



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* For finite state space, (for infinite state spaces
under extra regularity conditions ),we have
* Q=22 Qij(t) (6)
Proof: since P, (t) sum overjto 1
Y1 P j(t)=1s0 Pyj(t) + X011 Pij(t)=1
o1y P j(t)=1- Py (t)
Dividing by t and let t->0 we obtain (6)

e And let
—Q;i=q, (7) foralli,



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

 Same as DTMC model that is specified via a
transition probability matrix P, we can specify a
CTMC model via the transition-rate matrix Q.

* In specifying the transition-rate matrix Q, it
suffices to specify the off-diagonal elements

Q, ; for i+ j, because the diagonal elements Q;; are
always defined by (6).

* The off-diagonal elements are always

nonnegative, whereas the diagonal elements are
always negative.

e Each row sum of Q is zero.



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* |n fact, this approach to CTMC modelling is
perhaps best related to modelling with
ordinary differential equations,

 We may use Chapman-Kolmogorov equations
to find the transition probabilities P; ;(t) from
the transition rates Q;; = P'; ,(0+)

* To do this we use the two systems of ordinary
differential equations (ODE’s) generated by
the transition rates namely, Kolmogorov
forward and backward ODE’s (defined next).



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

Theorem 1. (Kolmogorov forward and backward
ODE’s) The transition probabilities satisfy both the
Kolmogorov forward differential equations

Pt + h)=>. P.o(t)Q;(h) foralli,j (9)

in matrix notation is the matrix ODE

P(t) = P(t)Q (10)

and the Kolmogorov backward differential
equations

P (h+ t)=); Q(h)P(t) foralli,j (11)
in matrix notation is the matrix ODE
P(t)=QP(t) (12)



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* Proof: We apply the Chapman-Kolmogorov
equations to write

P(t + h) = P(t)P(h),
and then do an asymptotic analysis as h {, 0.

* We subtract P(t) from both sides and divide by

h, to get

P(t+h)—P() P(h) —1
h =PO—

where | is the identity matrix




constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* Recalling that | = P(0), we can let h{, 0 to get
the desired result (10).

* To get the backward equation (12), we start
with

P(t + h) = P(h + t)=P(h)P(t)

and reason in the same way =



constructing a CTMC (model 2 : Transition Rates and ODE’s)M/M/1 Queue
 Example (Transient Probabilities for the

M/M/1 Queue)

* Note that given that the initial state at time 0
was state |,

P(X(t+h)=j+1|X(t)=))=Ah+o(h)
P(X(t+h) = j=1| X(5) = j) = uh+o(h)
P(X(t+h)=j| X(0) = j) =1 =[Ah+ wh]+o(h)
A k=j+1

u k=j-1,7>0
—-[A+u]l  k=j,j>0
-A k=j,j=0

q(j,k) =

A A

A A A A A
oB®
e
i i p i p

29 [T [T



constructing a CTMC (model 2 : Transition Rates and ODE’s)M/M/1 Queue
£
Pi(t+At) = Y P(At)Pe;(t)
k=0

= Y Pii(At)P;(t) + P, i(At)P, 5(t). (8.118)
ki

1 - F;;(At)
AY;

F; ;(t + At) — B ;(1) _ Z F; k(At)

P i (t) —
At A Dealt)

F; ;(t).
ki

Thus we find chapman-Kolmogorov backward equation.
Nel page 379

dF;;(t) B
dt N ;qhkpknjft} %P-:,J{f}.

30



constructing a CTMC (model 2 : Transition Rates
and ODE’s)M/M/1 Queue

* Example (Transient Probabilities for the M/M/1
Queue)

* Note that given that the initial state at time 0 was
state |,

* Writing the forward equation for the MIMI1
gueue yields

dP, ,(t)
diq = “Pil1(t) - APilo(t);

dP, (t
a'/'é( ), P, a(t) + AP, (1) - (A + )P, (¢).




constructing a CTMC (model 2 : Transition Rates
and ODE’s) M/M/1 Queue

 Example (Cntd.) The solution to these equations for
this case is then given by

Pl a) + P (e
.. —p —(A+ p) . _
Pit) =e =27 F + (1= p)p) Lk=j+ir2P 21 (at)

* wherep = %and a=2 u./p and

(E)k+2m
* I(x) = 231:0( . k= -1

k+m)!m!
is the series expansion for the modified Bessel function of
the first kind.



constructing a CTMC (model 2 : Transition Rates
and ODE’s) M/M/1 Queue

 Example (Cntd.) It is difficult to have any intuition regarding the
solution except for its limiting, and thus stationary, values.

* (no need for normalization eq. since initial condition P(0) =(0,...0,
1,0,,...) being in state i at t=0 (p,,(0)=1) is an extra equation)

* Inthe third term (i.e. coefficient (1 — p)p’/) we see factors
corresponding to the stationary distribution.

* it must be th_)r(r}o Pi,j(t) = (1 — p)p/independent of i.

* The solution of transient probabilities suggests that :
o limy e WAL (at) =0

o limy_ e WHHpUT—I2], Li1at) =0

* lime e MY i p P (at) = 1

33



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

 Equations (10 &12) are matrix ODE’s in t that can
be similarly solved as the scalar ODE f’(t)=gf(t)
and have matrix exponential solution.

* (P(0) =1, the initial condition plays no role) In
particular, as a consequence of Theorem 1, and If
all entries of Q are bounded,(Q is said to be
uniform: the name comes from uniformization of
CTMC in model 4) we have the following
Theorem?2.

* Q;;=00 means instantaneous jump from state /
upon entering this state



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

 Theorem 2. (matrix exponential
representation) The transition function can be
expressed as a matrix-exponential function of

the rate matrix Q, i.e.,
P(t) = th=Zn:0 n! (13)
This matrix exponential is the unique solution to
the two ODE’s with initial condition P(0) = I.




constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* Proof: If we verify or assume that we can
interchange summation and differentiation in
(13), we can check that the displayed matrix
exponential satisfies the two ODE’s

, ntn d Qntn
P(t)_ Zn 0 ni 2= Odt n!

nQ”t" 1 ntn
_Z%O 0 n _QZTL 0 n! Qth -

Note: limiting prob of ctmc(ross, 9", page
384)



Summary of some Models of Markov Processes

Type of Process Self-Loops Holding Time
Semi-Markov Processes No Arbitrary
Model 1 Yes Hi=1
Markov chains
Model 2 No Geometric, E [H;] = (1 — p; ;)"
Continuous time No Exponential, F [H;] = ¢
Markov processes | Uniformized-Model 1 Yes H; =1
Uniformized—Model 2 No Geometric, E [H;] = Gmax/¢i
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