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Poisson process

General
Poisson process is one of the most important models used in queueing 
theory.
• Often the arrival process of customers can be described by a Poisson 
process.
• In teletraffic theory the “customers” may be calls or packets. Poisson 
process is a viable model when the calls or packets originate from a 
large population of independent users.
In the following it is instructive to think that the Poisson process we 
consider represents discrete arrivals (of e.g. calls or packets).
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Poisson process

General

Mathematically the process is described by the so called 

counter process Nt or N(t). 

The counter tells the number of arrivals that have occurred in the interval 
(0, t) or, more generally, in the interval (t1 , t2).
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0 t

t1 t2

N(t)

N(t) = number of arrivals in the interval (0, t) (the stochastic process we consider)

N(t1 , t2) = number of arrival in the interval (t1 , t2) (the increment process N(t2) − N(t1))



Poisson process

General (continued)
A Poisson process can be characterized in different ways:
• Process of independent increments
• Pure birth process
– the arrival intensity λ (mean arrival rate; probability of arrival per time 
unit
• The “most random” process with a given intensity λ
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The Poisson process can be defined in three different (but equivalent) 
ways:

Definition 1
Poisson process is a pure birth process:
In an infinitesimal time interval dt there may occur only one arrival. This 
happens with the probability λdt independent of arrivals outside the 
interval.                              
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Poisson process – Definition 1



Definition 2

The number of arrivals N(t) in a finite interval of length t obeys the Poisson(λt) 
distribution,

P{N(t) = n} = 
(λt)n

n!
e−λt

Moreover, the number of arrivals N(t1 , t2) and
N(t3 , t4) in non-overlapping intervals (t1 ≤ t2 ≤ t3 ≤t4) are independent.
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∼ Poisson(λt1) ∼ Poisson(λt2)

t1 t2

λ

Poisson process – Definition 2



Definition 3

The interarrival times are independent and obey the
Exp(λ) distribution:

P{interarrival time > t} = e−λt
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∼ Exp(λ)

Poisson process – Definition 3



The three definitions are equivalent:
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birth process, λ

N(t) ∼ Poisson(λt) interarrival times ∼ Exp(λ)

1

2 3

Poisson process – The equivalence of the definitions



The equivalence of the definitions

In the following we show the equivalence by showing the implications in 
the direction of the solid arrows. Then any of the three properties 
implies the other two ones.
In fact, the implication 2 → 1 is not necessary for proving the 
equivalence (as it follows from the implications 2 → 3 and 3 → 1), but it 
can be shown very easily directly.
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1 → 2 → 3

3 → 1 → 2

Poisson process 



Proof of the equivalence: part (1 → 2)
We wish to show that property 1 implies property 2 

Assume that arrivals in different intervals are independent and

P{arrival in (t,t + dt)} = λ · dt
Consider the generating function of the counter Gt(z):
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N(0,t) N(t,t+dt)

0 t       t+dt

Poisson process 



Proof of the equivalence: part (1 → 2)

Gt(z) = E[zN(0,t)]

Gt+dt(z) = E[zN(0,t+dt)] = E[zN(0,t)+N(t,t+dt)]

= E[zN(0,t)]E[zN(t,t+dt)]

= Gt(z) − λdt(1 − z) Gt(z)
Gt+dt(z)−Gt(z)

dt
= λ(z − 1) Gt(z) ⇒

d
dt

Gt(z) = λ(z − 1) Gt(z)

d
dt

log Gt(z) = λ(z − 1) ⇒ log Gt(z) − log G0(z) = λ(z − 1)t
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Gt(z) (1−λ·dt) z0+λ·dt·z1

0

Gt(z)= e (z−1)λt generating function of the Poisson distribution

Poisson process 



Proof of the equivalence: part (2 → 1)

Assume that P{N(t) = n} =
(λt)n

n!
𝑒−λt

Then

P{N(dt) = 0} = 𝑒−λdt = 1 − λ · dt + o(dt)

P{N(dt) = 1} = 
λ · dt

1!
(1 − λ · dt + o(dt)) = λ · dt + o(dt)
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Moreover, since property 2 assumes independence of arrivals in 

non-overlapping intervals, an arrival in interval dt occurs 

independently of arrivals outside the interval

Poisson process – The equivalence of the definitions



Proof of the equivalence: part (2 → 3)
Consider the time interval X between two arrivals:
{X > t} ≡ {N(t) = 0} (the events are equivalent)

P{X > t} = P{N(t) = 0} = 𝑒−λt

⇒ X ∼ Exp(λ)
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interval

Poisson process – The equivalence of the definitions



Proof of the equivalence: part (3 → 1)
It was noted already in considering the exponential distribution: If X ∼
Exp(λ) then the probability that the period ends (an arrival occurs) in the 
interval dt is λ · dt + O(dt).
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The Poisson process has several interesting (and useful) properties:
1. Conditioning on the number of arrivals. Given that in the interval (0, t) 
the number of arrivals is N(t) = n, these n arrivals are independently and 
uniformly distributed in the interval.
• One way to generate a Poisson process in the interval (0, t) is as 
follows:
– draw the total number of arrivals n from the Poisson(λt) distribution
– for each arrival draw its position in the interval (0, t) from the uniform 
distribution, independently of the others
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2. Superposition. The superposition of two Poisson
processes with intensities λ1 and λ2 is a Poisson
process with intensity λ = λ1 + λ2.
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3. Random selection. If a random selection is made from a 
Poisson process with intensity λ such that each arrival is 
selected with probability p, independently of the others, the 
resulting process is a Poisson process with intensity pλ.
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4. Random split. If a Poisson process with intensity λ
is randomly split into two subprocesses with probabilities p1 and p2, 
where p1 + p2 = 1, then the resulting processes are independent Poisson 
processes with intensities p1λ and p2λ.
(This result allows an straightforward generalization to a split into more 
than two subprocesses.)
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5. PASTA. The Poisson process has the so called PASTA property (Poisson 
Arrivals See Time Averages): for instance, customers with Poisson 
arrivals see the system as if they came into the system at a random 
instant of time (despite they induce the evolution of the system).

We prove some of these properties: 

See Appendix
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The PASTA property is one of the central tools in queueing theory. 
Sometimes this property is referred to as ROP (Random Observer 
Property).
Consider an arbitrary system which 

spends its time in different states Ej.
Arrivals to the system constitute a Poisson process with intensity λ. 
These arrivals induce state transitions in the system.
In equilibrium, we may associate with each state Ej two different 
probabilities:
1. The probability of the state as seen by an outside random observer

πj = probability that the system is in the state Ej at a random instant

2. The probability of the state seen by an arriving customer
π∗

j = probability that the system is in the state Ej just before (a randomly chosen) arrival
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System State Ej

λ

In general, πj ≠ π∗
j

Properties of the Poisson process- PASTA



Example. Your own PC (one customer, one server)

E0 = PC free
E1 = PC occupied

π∗
0 = 1 (your own PC is always free when you need it)

π∗
1 = 0

π0 = proportion of time the PC is free (< 1)
π1 = proportion of time the PC is occupied (> 0)

Note, in this case the arrival process is not Poisson; when an arrival has occurred (i.e. you 
have started to work with you PC) for a while it’s unlikely that another arrival occurs (i.e. 
you have stopped the previous session and started a new one). Thus the arrivals at 
different times are not independent.
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Properties of the Poisson process- PASTA (continued)
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In the case of a Poisson arrival process it holds             πj = π∗
j

Proof
The arrival history before the instant of consideration, irrespective whether we are 
considering a random instant or an arrival instant, are stochastically the same:
a sequence of arrivals with exponentially distributed interarrival times.

Since the stochastic characterization of the arrival process before the instant of 
consideration is the same, irrespective how the instant has been chosen) the state 
distributions of the system (i.e. πj , π∗

j ) (induced by the past arrivals processes) at 
the instant of consideration must be the same in both cases.

This follows from the memoryless property of 
the exponential distribution. The remaining 
time to the next arrival has the same 
exponential distribution irrespective of the 
time that has already elapsed since the 
previous arrival (the same holds also in 
reversed time, i.e. looking backwards).

t  attached to

the arrival of

t  arbitrary

Properties of the Poisson process-PASTA (continued)
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The setting of the paradox is the following 

• Cars are passing a point of a road according to a Poisson process.
• The mean interval between the cars is 10 min.
• A hitchhiker arrives to the road side point at random instant of 
time.

From the memoryless property of the exponential distribution it follows that the 
(residual) time to the next arrival has the same Exp(λ) distribution and the expected time 
is thus
ഥW= 10 min

This appears paradoxical. Why isn’t the expected time 5 min? Is there something wrong?
Answer: No, the expected time is indeed ഥW= 10 min.

Wait W ∼ Exp(λ)

തX= 10 mininterval
λ

The hitchhiker’s paradox

Q:What is the mean waiting time ഥW until the 
next car. 

A: The interarrival times in a Poisson process 
are exponentially distributed. 
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In short, the explanation of the paradox lies therein that the 
hitchhiker’s probability to arrive during a long interarrival interval is 
greater than during a short interval.

Given the interarrival interval, within that interval the arrival instant of 
the hitchhiker is uniformly distributed and the expected waiting time is 
one half of the total duration of the interval. The point is that in the 
selection by the random instant the long intervals are more
frequently represented than the short ones (with a weight proportional 
to the length of the interval)

Explanation for the hitchhiker’s paradox



25

Consider a long period of time t. The waiting time to the next car arrival W(τ) as 
the function of the arrival instant of the hitchhiker τ is represented by the 
sawtooth curve in the figure. The mean waiting time is the average value of the 
curve.

As t → ∞ the number of the triangles n tends to t/ തX. (i.e. n=t/ തX for t → ∞ )

ഥW=
1

𝑡
න
0

𝑡

W 𝜏 𝑑𝜏 =
1

𝑡
෍

𝑖=1

𝑛 1

2
X 𝑖

2

(sum of the areas of the triangles; Xi is the 
interarrival time)

ഥW=
1

തX

1

𝑛
෍

𝑖=1

𝑛 1

2
X 𝑖

2 =
1

2

X2

തX

For exponential distribution

X2 = (തX)2 + V[X]= 2(തX)2, thus ഥW=തX

(തX)2

X1 X2 . . . Xn t

the waiting time W

W(τ)

ഥW

Explanation for the hitchhiker’s paradox
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Appendix



The proof of property 1 is left as an exercise.
For the proofs we may use any of the given three definitions of the 
Poisson process as we find most convenient

27
Properties of the Poisson process -proofs



The probability that an arrival occurs from process 1
in the interval dt is λ1 · dt independent of the arrivals
outside the interval. Similarly, the arrival probability
from process 2 is λ2 dt.

⇒ In the superposed process the probability for an arrival in the interval dt
is (λ1 + λ2)dt independent of 

arrivals outside the interval.

⇒ The superposition is a Poisson

process with intensity λ1 + λ2.

Q: what is the distribution of the

differences of two Poisson process? Papoulis

28
Proof (property 2, superposition)



The probability that an arrival occurs from the original
process in the interval dt is λ · dt independent of the
arrivals outside the interval.
After the random selection the probability for an arrival in the interval dt
is p · λ · dt (independent of the arrivals outside the interval).

⇒ The process of the selected arrivals is a Poisson process with intensity 
p · λ.
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Proof (property 3, random selection)



Both of the subprocesses resulting from the split represent a random 
selection of the original process and are thus Poisson processes with 
intensities piλ.
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Proof (property 4, random split)



It remains to prove the independence of the processes. Let

N1(I1) = number of arrivals from subprocess 1 in the interval I1

N2(I2) = number of arrivals from subprocess 2 in the interval I2

Denote I = I1 ∩ I2

N1(I1) = N1(I) + N1(I1 ∩ ҧI2)

N2(I2) = N2(I) + N2(I2 ∩ ҧI1)

Arrivals in non-overlapping intervals

I1 ∩ ҧI2 and I2 ∩ ҧI1 are certainly independent.

There may be dependence only between N1(I) and N2(I). But these represent the random 
split of the total number of arrivals from the original process, with distribution 
Poisson(λ|I|), into two sets; the sizes of these sets were shown to be independent in 
considering the properties of the Poisson distribution.

31Proof (property 4, random split) cntd.



32

Non-homogeneous Poisson process (NHPP) or

Non-staionary Poisson process (NSPP)

Poisson process is not stationary. However, its non-
overlapping increments are stationary 

In contrast

NSSP is not stationary and its  non-overlapping increments 
are not stationary as well
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Inhomogeneous Poisson process ( or Non-
stationary Poisson Process- NSPP)
Thus far we have considered a Poisson 
process with a constant intensity λ. This can 
be generalized to a so called inhomogeneous 
Poisson process by letting the intensity to 
vary in time λ(t). (Note. λ(t) is a deterministic 
function of time.)
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Inhomogeneous Poisson process (continued)

The probability of an arrival in a short interval of time (t, t + dt) is now λ(t)dt + 
o(dt).

• The probability for more than one arrivals is of the order o(dt)

• The expected number of arrivals in the interval (t, t + dt) is

E[N(t, t + dt)] =σn=0
∞ n · P{n arrivals in (t, t + dt)} = λ(t)dt + o(dt)

• Correspondingly, the expected number of arrivals in a finite interval (0, t) is

E[N(0, t)] = E[0׬
𝑡

N(u, u + du)]= 0׬
𝑡

E[N(u, u + du)] 0׬ =
𝑡

λ(u)du

(Under mild conditions The expectation of a sum is always the sum of the expectations of 
individual terms, therefore the order of integration and expectation can be interchanged.)
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Inhomogeneous Poisson process (continued)
In the same way as in the case of an ordinary homogeneous Poisson process, 

we can derive a differential equation for the generating function Gt(z) of the 
counter process N(t) (number of arrivals in (0, t)) of an inhomogeneous Poisson 
process,

d
dt

Gt(z) = (z − 1)λ(t)Gt(z) ⇒
d
dt

log Gt(z)= (z − 1)λ(t) 

from which we get by integration

Gt(z) = e (z−1) 0׬
𝑡 λ(u)du

Denote the expected number of arrivals in (0, t) by a(t)

a(t) = E[N(t)] = 0׬
𝑡

λ(u)du

We see that Gt(z) is the generating function of a random variable with Poisson 
distribution.

Thus,   N(t) ∼ Poisson(a(t))
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Properties of an inhomogeneous Poisson process

Analogously with homogeneous Poisson process, the inhomogeneous Poisson 
process can be shown to have the following properties:

1. Conditioning on the number. Given the total number of arrivals N(t) = n in 
the interval (0, t) from an inhomogeneous Poisson process, the arrival instants 
of these n arrivals are distributed independently in the interval (0, t) with the 

density function λ(t)/ 0׬
𝑡

λ(u)du.

2. Superposition. The superposition of two inhomogeneous Poisson processes 
with intensities λ1(t) and λ2(t) is an inhomogeneous Poisson process with 
intensity λ(t) = λ1(t) + λ2(t).

3. Random selection. A random selection from an inhomogeneous Poisson 
process with intensity λ(t) such that each arrival is selected, independent of 
the others, with the probability p(t) (note, selection itself may depend on 
time) results in an inhomogeneous Poisson process with intensity p(t)λ(t).
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Properties of an inhomogeneous Poisson process (cntd.)

4. Random split. If an inhomogeneous Poisson process with intensity λ(t) is 
randomly split into two subprocesses with the probabilities p1(t) and p2(t), 
where p1(t) + p2(t) = 1, then the resulting subprocesses are independent 
inhomogeneous Poisson processes with intensities p1(t)λ(t) and p2(t)λ(t).



Example 9.25 Filtered Poisson Impulse Train (Garcia p 512)
38

The Poisson process is zero at t=0 and increases by one unit at the random arrival 
times Sj , j=1,2,…
Thus the Poisson process can be expressed as the sum of randomly shifted step
functions:

N(t)=σ𝑖=1
∞ 𝑢(𝑡 − 𝑆𝑖) N(0)=0

where Si the are the arrival times.

Since the integral of a delta function is a step function we can view N(t)
as the result of integrating a train of delta functions that occur at times Si as 
shown in Fig.

Z(t)=σ𝑘=1
∞ 𝛿(𝑡 − 𝑆𝑘)

Z(t)=σ𝑘=1
∞ 𝛿(𝑡 − 𝑆𝑘)

Z(t) ෍

𝑘=1

∞

𝑢(𝑡 − 𝑆𝑘)

Poisson process as integral of train

of delta functions delta functions.



Example 9.25 Filtered Poisson Impulse Train (cntd.)
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X(t)

Z(t) 𝑋 𝑡 = ෍

𝑘=1

∞

ℎ(𝑡 − 𝑆𝑘)

Filtered train of delta functions.

We can obtain other continuous-time processes by 
replacing the step function by another
function h(t) as shown in Fig.

𝑋 𝑡 = ෍

𝑘=1

∞

ℎ(𝑡 − 𝑆𝑘)

For example, h(t) could represent the current pulse 
that results when a photoelectron hits a detector. X(t) 
is then the total current flowing at time t. X(t) is 
called a shot noise process.



Example 9.26: mean of shot noise: E[X(t)]
40

We condition on N(t), the number of impulses that have occurred up to time t:
E[X(t)]= E[E[X(t)|N(t)]] 

Suppose N(t)=k , then 

E[X(t)|N(t)=k]=E σ𝑗=1
𝑘 ℎ(𝑡 − 𝑆𝑗) = σ𝑗=1

𝑘 𝐸[ℎ 𝑡 − 𝑆𝑗 ]

Since the arrival times,S1,S2,…Sk, when the impulses occurred are independent, 
uniformly distributed in the interval [0, t],

𝐸 ℎ 𝑡 − 𝑆𝑗 0׬=
𝑡
ℎ(𝑡 − 𝑠)

𝑑𝑠

𝑡
= 
1

𝑡
0׬
𝑡
ℎ 𝑢 𝑑𝑢

Thus     E[X(t)|N(t)=k]= 
𝑘

𝑡
0׬
𝑡
ℎ 𝑢 𝑑𝑢

and E[X(t)|N(t)]=
𝑁(𝑡)

𝑡
0׬
𝑡
ℎ 𝑢 𝑑𝑢

Finally, we obtain  E[X(t)]= E[E[X(t)|N(t)]] =
𝐸[𝑁 𝑡 ]

𝑡
0׬
𝑡
ℎ 𝑢 𝑑𝑢 = 𝜆 0׬

𝑡
ℎ 𝑢 𝑑𝑢

Note: E[X(t)] approaches a constant value as t becomes large if the above integral 
is finite.


