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OUTLINE:

o Z-transform:
— Definition;
— Properties;

— Inversion.

» Laplace
transform:

— Definition;
— Properties;

— Inversion.
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1. Why transforms

Why we are going to consider them separately:

 most problems for those who did not take specific math
courses;

« provide a way to analyze queuing systems.
Types of the transforms:

» Laplace transform;

« Ztransform;

* Fourier transform;
How we call transforms:

» just transform (referring to any transform);

« Z-transform: (probability) generating function;

« Laplace transform: Laplace-Stieltjes transform.
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Why we are going to use transforms:
* they naturally appear in analysis of queues;
» they simplify the calculation;

« sometimes they are the only tool.

What kind of transforms we are going to consider:
« Laplace transform for continuous RVs;

« Z transform for discrete RVSs.

We basically follow:

» L. Kleinrock, "Queuing systems, Volume I: Theory,” John Wiley &
Sons;

 R. Gabel, R. Roberts, "Signals and linear systems,” John Wiley &
Sons;

* Internet, e.g. www.wikipedia.org
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2. Z transform

Assume: we are given discrete function defined on RV X , which takes
nonnegative values , X €{0,1,2,...}.

Denote the point probabilities by pj p; = P{X =i} (1)
What we want: compress it into a single one such that:
» it passes unchanged through the system;
 we can decompress it.
Do the following:
- tag each value in sequence multiplying by zt:
— why z!: iis unique, thus, z! is unique for each p;.

« get a single function depending on z only G(z) (or Gx(2); also X(z) or X(z) ) by
summing all terms:

= 2
6(2) = Gx(2) = ) pizt = Elz¥) @
i=0

— which is called z-transform (or generating function or geometric
transform).
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2. Z transform

Rationale
* A handy way to record all the values {p,, p;, - - .}; Z iIs a ‘bookkeeping
variable’

« Often G(z) can be explicitly calculated (a simple analytical expression)
* When G(z) is given, one can conversely deduce the values {p,, p;, - - -}

« Some operations on distributions correspond to much simpler operations
on the generating functions

« Often simplifies the solution of recursive equations

Lecture: Laplace and Z transforms
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Condition of existence for z-transform:

* terms in a sequence grow no faster than geometrically;

* meaning that ifthere isa> 0 for which the following holds:

lim M =0
i—>oo al

— for this sequence z-transform is unique.
Analyticity:

* the sum of all terms in p; must be finite;
 if so, then G (z) is analytic on a unit circle [4< 1;

* in this case we have:

6(1) = XiZoPi

Note: analyticity means that the function has unique derivative.

(3)

(4)
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1. Getting z-transforms
Delta functiond;= 1,i= 0,6;= 0,i # O:

« since the only one term is non-zero corresponding toi= 0 we
have:
(5)
51' A x4 Z0 =1
Delta function shifted by k: §;-x= 1,i= k,§;= 0,i #k:
» since the only one term is non-zero corresponding to i = k we (6)
have:
ik © z°
Unit step function: uy;= 1,i= 0,1,...:
« recall that ui= 0 fori< O; > 1
_ _ u; © Z 1zt = (7)
« we have geometric series: — 1-2z
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Geometric series: p; = Ao/, i=0,1,...:

» calculate z-transform as follows:

< = A (8)
G(z) = ZAa‘z‘ - AZ(cxz)l =
=0 =0

* therefore, we have:

A (9)

« z-transform is analytic for [4< 1/ a.
Arbitrary sequence: { po = —-2,p1 = 0,p2=4,p3= -6}

 calculate z-transform as follows:
(10)

3
G(z) = Epizi = —2+4z% - 623
i=0
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Z=TRANSFORM

SEQUENCE
1 fﬂ B = O’ ]a 29 <>
| n =
2. Uy =
0 n#0
3 lln_]\

7. na™

F(Z) = —zofnzn

Lecture: Laplace and Z transforms
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SEQUENCE

Z=TRANSFORM

8. n

9. n*a”

10. n®

11. (n + 1)a”
12. (n 4+ 1)

1
13. —'(n +m)n+m-—1):++(n + 1)a®
m!

1
14, —

n!

2
(1 —2)
xz(l + az)
(1 — az)?
2(1 + 2)
(T =2y

1
(1 — x2)?

1
(1 —2)*

1

(1 — az)™mtl

CZ

Lecture: Laplace and Z transforms
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2. Properties of z-transform

Convolution property: Let X and Y be independent random variables with
corresponding distributions:

pi= P{IX=1}>0 i=0,1,...;
q]: P{y:j}>0 j:O,l,,

« denote their transforms by G,(z) and G(z);

- convolution is defined as follows: p; ®q; < Yk o Di—k Tk (11)
 derive the transform of the convolution as:
00 © I
pi Og; © Z(Pi Oq)z' = z z Di—rqrz' 2" (12)
=0 i=0 k=0
« change the summation Zfio 2;\:0 — Zlo(ozo Zf’;k to get as:
_ m _ (13)
pi Ogq; © qkz pl k2= Pmz™ = Gx(2)Gy(2)
k=0 m=0
Lecture: Laplace and Z transforms 12
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SEQUENCE Z2-TRANSFORM
N ne=Q 1.2 ..., <> F(z)=zfnz"
n=>0
2. af, + bg, aF(z) + bG(2)

3. a*f,
4. falx n=05k,2k,...

5. fasr

SRR 53

A
.o &b

9. nfn

F(az)
F(Z%)

1
- [F@) — fo]
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2-TRANSFORM

10

11
12

13

14.

15.

16.

17.

18.

19.

SEQUENCE
nn—=1Dn—-2),...,(n —m+ 1)f,
cJn ® &n
-fn "'fn—l

n
sz n=0,12,...
k=0
0
= A (a is a parameter of f;,)

Series sum property

Alternating sum property
Initial value theorem
Intermediate value theorem

Final value theorem

m

dz"l
F(2)G(2)

z'm

F(z)

(1 — 2)F(z)
F(z)

] —z
aF
a_a (2)

=5 5

F(=1) = 3 (=17

F(0) = f,
1 d"F(2)
;E dz" z=0=fn

lim (1 —2)F(z) = f,

z—1

Lecture: Lap

lace and Z transforms
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3. Inverting z-transform Why we need it:
« sometimes we need to get p; when we have G (2);

« example: queuing systems, we will see...

Methods to invert transforms: three methods

1- Develop G(z) in a power series, from which the p; can be identified as the
coefficients of the z,. The coefficients can also be calculated by derivation (this
is actually uses intermediate value theorem (property 18):

[
BRIl B FIOI0) (14)
(! dzt (!

Pi
z=0
— complicated when many terms are required.
2- By inspection: decompose G(z) in parts the inverse transforms of which are known;

€.J. the partial fractions (usage of the inversion formula (see, for example, Kleinrock, "Queuing systems, Vol. I’))

3. By a (path) integral on the complex plane

pi

= 1 ng(fl) dz path encircling the origin (must be chosen so
2ni ) 7! that the poles of G(z) are outside the path)

Note: all methods are, at least, time-consuming!!!

Lecture: Laplace and Z transforms 15
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4. Example: inverting using inspection method
Basis: partial-fraction expansion:
« technique for expressing a rational function of z as a sum of simple terms;
« the idea: get elements that are easily invertible;
» possible when G (z) is rational function of z. G (z) = N (z)/D(2);

« possible when the degree of nominator is less than that of denominator (if not, make it
so!).

What we want:

« get terms like:

A

1—-az
What we then use:

= tm+m=1) ..+ Dal o — (15)

Aal &

« sum of the transforms equals to the transform of the sum:

ap; + bq; = aGX(z) + bGy(2) (16)

Lecture: Laplace and Z transforms 16
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Assumptions:

* D(z2) in G(z) = N(2)/D(z) is already in factored form:

K
D(z) = 1_[(1 — a;z)™ (17)
=1
— Ith root is at 1/ a; occurring m; times.
* Note: putting D(z) in the factored form can be complicated.
Lecture: Laplace and Z transforms 17
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If above is satisfied you may get F (z) in the following form:

In the general form below: Ith root is at 1/ a; occurring m; times

A11 A1z A1m, Azq Azz

G(z) = er (1-ayz)™~1 ot (1-—a12)  (1-azz2)™.  (1-apz)™~! T
A A A A
n 2m, 4ot k1 + k2 _1_|_..._|_ kmy
(1 - ay2) (1=aez)™ (1= az)™ (1 — az) (18)

where coefficients are given by

1 dj_1 - N(2)
= (/—1)1(‘—)’ 1 (“‘“lz) ZD(Z)>

(19)

z=1/a;

Multiplying by (1 — a;z)™ discards multi- root z= 1/ a; in denominator and thus the expression
atz= 1/ a is unambiguous

Lecture: Laplace and Z transforms 18
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Example:

(20)

G(z)=< 47z%(1 — 8z2) )

(1—-42)(1 —2z)2
Do the following:

» observe that denominator and nominator have the same degree (i.e. 3);
— we have to put it in a proper form (degree of nominator must be strictly less);

— to do so factor out two powers of z to get:

4(1 — 82) ) (21)

6@2) = z° ((1 —4z)(1 - 22)?

« denote the rest by R(2):
4(1 —8z)
(1—-42)(1 - 22)?

R(z) = (22)

— there are three poles of denominator: single pole z= 1/4 and double pole z= 1/2;

—wehavek=2,a1=4, m =1, a= 2, m= 2.

Lecture: Laplace and Z transforms 19
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* now we can rewrite R(z) = [4(1 -82)])/[(1 -42)(1 - 22)?] as

4(1 — 8z A A A
( ) _ A 21 A (23)
(1-42)(1-22)? 1-4z (1 -22)* 1-2z

R(z) =
« get elements A11, A1 and Ay, as follows:
(-3)
_1= 2
C(-0)
4(1 - (;))

=y (1-(4/2)

A= (1- 4Z)Q(Z)|Z = —16

A,y = (1=22)?R(2) 12

(24)
1d 1d4(1-82) 1 (1—-42)(—-32) —4(1 —82)(—4)
= — —— —_ 2 = — — = — - =
Aop = =53, (17227 R(E) 1 2dz (1—42) | 1 2 (1— 42)? 8
T2
» we get the following expression for R(z): (25)
16 12 8
R(z) = — +

1—4z (1—22)2+1—22

Lecture: Laplace and Z transforms 20
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« check that you got the same as initially had (place terms under common
denominator);

* now we can invert R(z) by inspection:
— first and third terms are in the form: A o’ < A/(1 —az);

16
1-4z

8(2)!

=—16(4)!

1-2z

—second term is in the form: (I/mY)(i+ m)(i+ m=-1)...(i+ Do <1/(1 -

12

1202 &12(i + 1)(2)!

Lecture: Laplace and Z transforms 21
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— using the linearity ag; + bgi= aGy(z) + bG,(z) we get:

fe) e as {—16(24)i 120+ D) 48R 0. (29
— using property 8 we take into account factor z2 in R (2):
p; = —16(4)"2 + 12— 1)()"?2+8(2)2% i=23,.. (27)
— finally optimizing the expression we have for p;:
(28)

Di = 0, 1 < 2{ _
p; = (2i —1)(2)' — (4)! i=23,..

Notes: other examples are in detail in R. Gabel, R. Roberts, "Signals
and linear systems”.

Lecture: Laplace and Z transforms 22



More Examples:

1

1
G(Z):—2:1+Zz+ Z4'_|_...
1—- 2z
= D = {1 fori.even
' 0 foriodd
Example 2
1 2 2 2
G(Z) = — =

1-22-2) 1-2z 2-2z 1-z 1-2z/2
A

Since corresponds to sequence A - @' we deduce

1—az

23
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3. The Laplace transform

Assume: we are given continuous function f(t) defined on nonzero

values:
f®)=0t<0 (29)

What we want: compress it into a single one such that:

» it passes unchanged through the system;

« we can decompress it.

Do the following:

« tag each value of f(t) multiplying by e~st:
— why e™st; t is unique, thus, et is unique for each f(t);
— why e™st; exponentials pass through linear time-invariant systems unchanged.

« get a single function by integrating over all non-zero values:

F(s)= [ f(t)e stdt (30)

— which gives two-sided Laplace transform.

Lecture: Laplace and Z transforms 24
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Our case: since f(t) defined on nonzero values we have:

F(s) = joof(t)e_“dt (31)
0

« which gives one-sided Laplace transform (0 means 0~ which means 0 — efor €> 0,
e— 0).

Condition of existence for Laplace transform:
* terms in a sequence must grow no faster than exponential;

* meaning that if there is real number g for which the following holds:

32
llmj |f (t)|e%tdt < 0 (32)
— Laplace transform exists and unique.
Analyticity of the Laplace transform:
« the integral of f(t) must be finite;
 if so, then F(s) is analytic on a right hand plane of Re(s) = 0O:
(33)

F(0)=f f(t)dt
0

Lecture: Laplace and Z transforms 25
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3.1. Getting Laplace transform

Example: one sided exponential function:

Ae % t>0 (34)
t) =
f@© {0 t<O0
« get the Laplace transform as follows
0 0) co A
f(t) o F(s) = j Ae~%e~St = AJ e (a+s)t gt = (39)
0 0 s+a
Example: unit step function:
11 t=0 (36)
u(e) = {0 t <0
« consider it as a special case of one-sided exponential function to
get:
1 (37)
u(t) o F(s) = S
Lecture: Laplace and Z transforms 26
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FUNCTION

TRANSFORM

—

. f(1) t >0 <>

o

uy(t) (unit impulse)
3. uy(r — a)

d

4. 1) & o Un_4(1)

5. u_4(t) & 6(1) (unit step)

F*(s) = f f(t)et dt
0—.
1

Lecture: Laplace and Z transforms
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FUNCTION TRANSFORM
) — o N - ewas
6. u_y(t — a)
e
tn—l |
T u_alr) = (n —1)! 5"
A
8. Ae ' 4(1)
S +.a
9. te* §(1) |
(s + a)*
10 g 5( :
. —e % 5(¢
~ i ) (s + a)*i

Lecture: Laplace and Z transforms
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2. Properties of the Laplace
transform

Convolution property:
« consider f(t) > 0, g(t) > 0 for t 20 only;

» denote their transforms by F(s) and
G(s);

- convolution is defined as _follows: (38)
F©) O g(®) f £(t - x)g(x)dx
— in our case the lower I|m|t is 0, the upper limit is <o,

 derive the transform of the convolution

as;fto:o fxt=o " fxoio ftc:x 0 t
FOOgD o | (FO O gE)estde = j j £t - x)g(x)dx e=stdt
t=0Yx=0

t=0

0o t oo 0
_ jt_of_ f(t . x)e—s(t—x)dt g(x)e_sxdx = j_ ) f(t — X)e_s(t_x)dt g(X)e_Sxdx (39)

= Joo g(x)e_sxdxjOo f()e™Ydv = F(s)G(s)
x=0 v=0

Lecture: Laplace and Z transforms 29
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FUNCTION TRANSFORM

1. f(1) t >0 <> F*(s) = | f(t)e*tdt
-

2. af(t) + bg(t)

. f(&) (@ > 0)

4. f(t — a)
5. e (1)

6. tf(1)

7. t™f(1)

aF*(s) + bG*(s)
aF*(as)

e~ B F*(s)
F*(s + a)
dF*(s)
ds
d"F*(s)
ds™

E=1

F*(s,) ds,

Lecture: Laplace and Z transforms
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FUNCTION TRANSFORM
10. £(1) ® g(1) F*(5)G*(s)
df (1)
& B *
11. “? sF*(s)
df(t)
T ne%x
12. o s"F*(s)
ol F*
130 | fayae sm
L t F*
ik Bir s f F{)dn)" s,(f)
J—0 ' —00
n times
3 : 2
15. in f(1) [a is a parameter] % F(s)

16. Integral property
17. Initial value theorem

18. Final value theorem

F*(0) =f f(r)dt
0
lim sF*(s) = lim f(1)

S§— o0 {t—-0

lim sF*(s) = lim f(1)

§—0 t—s 0

if sF*(s) is analytic for Re (s) > 0

Lecture: Laplace and Z transforms
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3.3. Two-sided Laplace transform

If f(t) may the nonzero anywhere on the axis:

FOoFE = fee (40)
» define the following functions:
_ ) f@®) t<o0 _ )0 t<0
J-(0) = {0 t>0" f+() = {f(t) t=0 (41)
« one may get Laplace transform as follows:
F@©) = f2(0) + f.(0) (42)
« we have the following property:
(43)
F(s) =F.(=s) + Fi(s), fo(t) o F(=s), fi(t) o Fi(s)
Lecture: Laplace and Z transforms 32
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4. Inverting Laplace transforms
There are the following methods:

* inspection method;
« formal inversion integral method.
Inspection method:

» use partial-fraction expansion to:
— rewrite F(s) as a sum of terms;

— each term should be recognizable as a transform pair.

* use linearity property to:
— invert the transform term by term;

— sum the result to recover f(t).

Note: we have to ensure that F(s) is a rational function of sand can be written as:

F(s) = N(s)/ D(s) (44)

Lecture: Laplace and Z transforms 33
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Do the following:

« ensure that the degree of the nominator is less than that of denominator:

— if this is not the case, make it so;

— to do so divide N (s) by D(s) until the remainder is less than the degree of
D(s);

— partial-fraction expansion must be carried out for remainder;
— powers of scan be taken into account using transform 4 (see table).
(45)
« D(s) in F(s) = N(s)/D(s) is already in fgctored form:

D) = | [+ apm
i=1

— ith root is at 1/ a; occurring m; times.

« note: putting D(s) in the factored form can be complicated.

Lecture: Laplace and Z transforms 34
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If the above satisfied:

* rewrite F (s) as follows:

B B B
F(s) = ————+ 2
(SB+ )™ (S;‘ )™ B(S + aq)
+ 21 __ zzm_1 4oy 2om,
s+ ay)™  (s+ ay)™ (s + ay)
(46)
+ ..
B B B
n k1 n k2 — 4ot km,
(s+ ap)™  (s+ ag)™ (s+ ar)
« coefficients are given by
1 a’/-1 N(s)
_ mi
Bij — (] _ 1)| de_1 ((S + al) (47)

D(s)

S=—a;

Lecture: Laplace and Z transforms 35
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Example:

_8(s*+3s+1)
) =G rD® “9)

 the denominator is already in factored form;

* the degree of the denominator (4) is greater than that of the nominator (2);
we have k= 2, a01= 3, mi= 1, a= 1, my= 3;

» we write F (s) as:

Bll BZl BZZ BZB
F(s) =
=3 G 0 T2 Ts+1 (49)
* it is easy to derive B1; and B
9-9+1
Bll = (S + 3)F(S)|S:_3 == 8 (_2)3 == _1 (50)
1-3+1 B (51)

BZl - (S + 1)3F(S)|S:_1 = 8 2

Lecture: Laplace and Z transforms 36
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» derive By, differentiating as follows:
B d 8(s?2+3s+1)
27 ds  (s+3)
s=-1
8(s+3)2s+3)—(s?2+3s+ 1)(1)
B (s + 3)2
8(s? + 65 + 8)
T (s+3)2
» derive By3 differentiating By; origélmore (what we had prior to evaluation at s= -1):

s=—1

1-6+8
6 (52)

g2

1 d? (8(52 + 3s + 1)) 1 d <(52 + 65 + 8))

23 = D1 ds? (s + 3) ~ 2 ds (s + 3)%
= s=-1 (53)
(s +3)2(2s+6)— (s> +65+8)(s +3) 2°4—-(1-6+8)(2)(2)
(s +3)4 24
s=—1
+ finally, we have the following expression for F(s): (54)
—1 —4 6 1

F =
(s) S+3+(s+1)3+(s+1)2+s+1

Lecture: Laplace and Z transforms 37
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 finally, we have after inversion:

(t) = —e 3t —2t?et+6et+et t=>0
(59)

ft)=0 t<0O

Checking for errors when doing partial-fraction expansion:

* once we have partial-fraction expansion:
— combine terms and compare to initial expression for F (s).
* once we get f(t):

— try to get Laplace transform and compare to F(s).

Notes: other examples are in detail in R. Gabel, R. Roberts, "Signals and linear
systems”.
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Generating functions: synopsis

1- Moment GF

00)

My(0) = E|e%%| = [~ e%%dFy(x)

— 00

* n-th moment E[x™] = m)((n)(O)

2- Probability GF

Py(z) 2 E(zX) =Y Pzt |z| <1
© TailGF Qz)= (ZZ) P, (x)>k
Lecture: Laplace and Z transforms 39



Generating functions: synopsis

3- Laplace Transform of non-negative RV

by (s) = Ele=5¥] = f Fe(e*dx
0

* n-th moment
E(X™) = (-1)"¢g" (0)

4- Characteristic function (Fourier =Stieltjes Fy (x) )

oo

eI dFy(w) —oo < w < 0o

Px(w) = E[e/*X] = [

Lecture: Laplace and Z transforms
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Generating functions: synopsis

Relating Moment Generating function/ Characteristic function

dx(w) = Mx(0) lo=iw

Relating Probability Generating function/ Moment Generating
function
6 _

Using € =z and gx(2) = E(z%)
gx(e?) = E[eex] = My (60)

Using 0 = In(z) and gx(2) = E(z%)

Mx(0)lins) = Mx(Inz) = E(e¥1?) = E (=) = E(z¥) = gx(2)
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