Laplace and Z Transforms

Dr Ahmad Khonsari ECE Dept. The University of Tehran

OUTLINE:

- Z-transform:
 - Definition;
 - Properties;
 - Inversion.
- Laplace transform:
 - Definition;
 - Properties;
 - Inversion.

1. Why transforms

Why we are going to consider them separately:

- most problems for those who did not take specific math courses;
- provide a way to analyze queuing systems.

Types of the transforms:

- Laplace transform;
- Z transform;
- Fourier transform;
- . . .

How we call transforms:

- just transform (referring to any transform);
- Z-transform: (probability) generating function;
- Laplace transform: Laplace-Stieltjes transform.

Why we are going to use transforms:

- they naturally appear in analysis of queues;
- they simplify the calculation;
- sometimes they are the only tool.

What kind of transforms we are going to consider:

- Laplace transform for continuous RVs;
- Z transform for discrete RVs.

We basically follow:

- L. Kleinrock, "Queuing systems, Volume I: Theory," John Wiley & Sons;
- R. Gabel, R. Roberts, "Signals and linear systems," John Wiley & Sons;
- Internet, e.g. <u>www.wikipedia.org</u>

2. Z transform

Assume: we are given discrete function defined on RV X , which takes nonnegative values , $X \in \{0, 1, 2, ...\}$.

Denote the point probabilities by p_i $p_i = P\{X = i\}$ (1)

What we want: compress it into a single one such that:

- it passes unchanged through the system;
- we can decompress it.

Do the following:

- tag each value in sequence multiplying by z^{i} :
 - why z^i : *i* is unique, thus, z^i is unique for each p_i .
- get a single function depending on z only G(z) (or $G_X(z)$; also X(z) or $\hat{X}(z)$) by summing all terms:

$$G(z) = G_X(z) = \sum_{i=0}^{\infty} p_i z^i = E[z^X]$$
(2)

- which is called z-transform (or generating function or geometric transform).

2. Z transform

Rationale

- A handy way to record all the values {p₀, p₁, . . .}; z is a 'bookkeeping variable'
- Often G(z) can be explicitly calculated (a simple analytical expression)
- When G(z) is given, one can conversely deduce the values $\{p_0, p_1, \ldots\}$
- Some operations on distributions correspond to much simpler operations on the generating functions
- Often simplifies the solution of recursive equations

Condition of existence for z-transform:

- terms in a sequence grow no faster than geometrically;
- meaning that if there is a > 0 for which the following holds:

$$\lim_{n \to \infty} \frac{|p_i|}{a^i} = 0 \tag{3}$$

- for this sequence z-transform is unique.

Analyticity:

- the sum of all terms in p_i must be finite;
 - if so, then G(z) is analytic on a unit circle $|z| \le 1$;
- in this case we have:

$$G(1) = \sum_{i=0}^{\infty} p_i \tag{4}$$

Note: analyticity means that the function has unique derivative.

1. Getting z-transforms

Delta function $\delta_i = 1, i = 0, \delta_i = 0, i \neq 0$:

since the only one term is non-zero corresponding to *i* = 0 we have:

$$\delta_i \leftrightarrow z^0 = 1$$

Delta function shifted by k: $\delta_{i-k} = 1$, i = k, $\delta_i = 0$, $i \neq k$:

since the only one term is non-zero corresponding to i = k we have:

$$\delta_{i-k} \leftrightarrow z^k$$

Unit step function: $u_i = 1, i = 0, 1, ...$

• recall that $u_i = 0$ for i < 0; • we have geometric series: $u_i \leftrightarrow \sum_{i=0}^{\infty} 1z^i = \frac{1}{1-z}$ (7)

Lecture: Laplace and Z transforms

(5)

(6)

Geometric series: $p_i = A\alpha^i$, i = 0, 1, ...

• calculate z-transform as follows:

$$G(z) = \sum_{i=0}^{\infty} A\alpha^i z^i = A \sum_{i=0}^{\infty} (\alpha z)^i = \frac{A}{1 - \alpha z}$$
(8)

• therefore, we have:

$$p_i = A\alpha^i \leftrightarrow \frac{A}{1 - \alpha z} \tag{9}$$

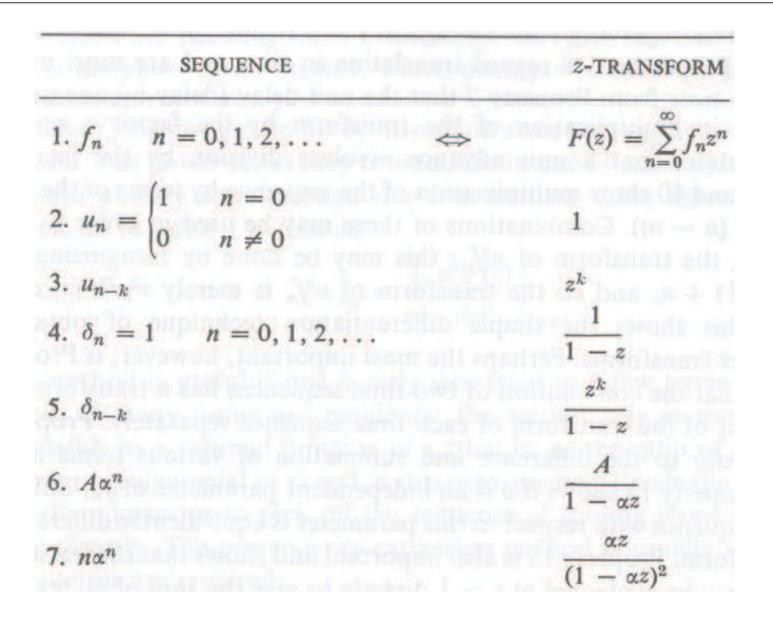
• z-transform is analytic for $|z| \le 1/\alpha$.

Arbitrary sequence: { $p_0 = -2, p_1 = 0, p_2 = 4, p_3 = -6$ }:

• calculate z-transform as follows:

(10)

$$G(z) = \sum_{i=0}^{3} p_i z^i = -2 + 4z^2 - 6z^3$$



SEQUENCE	z-TRANSFORM
8. <i>n</i>	$\frac{z}{(1-z)^2}$
9. $n^2 \alpha^n$	$\frac{\alpha z(1+\alpha z)}{(1-\alpha z)^3}$
10. <i>n</i> ²	$\frac{z(1+z)}{(1-z)^3}$
11. $(n + 1)\alpha^n$	$\frac{1}{(1 - \alpha z)^2}$
12. (<i>n</i> + 1)	$\frac{1}{(1-z)^2}$
13. $\frac{1}{m!}(n+m)(n+m-1)\cdots(n+1)\alpha^n$	$\frac{1}{(1-\alpha z)^{m+1}}$
14. $\frac{1}{n!}$	e ^z

2. Properties of z-transform

Convolution property: Let X and Y be independent random variables with corresponding distributions:

$$p_i = P\{X = i\} > 0 \quad i = 0, 1, \dots;$$

$$q_j = P\{Y = j\} > 0 \quad j = 0, 1, ...;$$

- denote their transforms by $G_X(z)$ and $G_Y(z)$;
- convolution is defined as follows: $p_i \odot q_i \leftrightarrow \sum_{k=0}^i p_{i-k} q_k$ (11)
- derive the transform of the convolution as:

$$p_i \odot q_i \leftrightarrow \sum_{i=0}^{\infty} (p_i \odot q_i) z^i = \sum_{i=0}^{\infty} \sum_{k=0}^{i} p_{i-k} q_k z^{i-k} z^k$$
(12)

• change the summation $\sum_{i=0}^{\infty} \sum_{k=0}^{i} = \sum_{k=0}^{\infty} \sum_{i=k}^{\infty}$ to get as:

$$p_i \odot q_i \leftrightarrow \sum_{k=0}^{\infty} q_k z^k \sum_{i=k}^{\infty} p_{i-k} z^{i-k} = \sum_{k=0}^{\infty} q_k z^k \sum_{m=0}^{\infty} p_m z^m = G_X(z) G_Y(z)$$
(13)

SEQUENCE	z-TRANSFORM
1. f_n $n = 0, 1, 2,$	$\iff F(z) = \sum_{n=0}^{\infty} f_n z^n$
2. $af_n + bg_n$	aF(z) + bG(z)
3. $a^n f_n$	F(az)
4. $f_{n/k}$ $n = 0, k, 2k,$	$F(z^k)$
5. f_{n+1}	$\frac{1}{z} \left[F(z) - f_0 \right]$
$6. f_{n+k} k > 0$	$rac{F(z)}{z^k} - \sum_{i=1}^k z^{i-k-1} f_{i-1}$
7. f_{n-1}	zF(z)
8. f_{n-k} $k > 0$	$z^kF(z)$
9. nf_n	$z \frac{d}{dz} F(z)$

SEQUENCE	z-TRANSFORM
10. $n(n-1)(n-2), \ldots, (n-m+1)f_n$	$z^m \frac{d^m}{dz^m} F(z)$
11. $f_n \circledast g_n$	F(z)G(z)
12. $f_n - f_{n-1}$	(1 - z)F(z)
13. $\sum_{k=0}^{n} f_k$ $n = 0, 1, 2,$	$\frac{F(z)}{1-z}$
14. $\frac{\partial}{\partial a} f_n$ (a is a parameter of f_n)	$\frac{\partial}{\partial a}F(z)$
15. Series sum property	$F(1) = \sum_{n=0}^{\infty} f_n$
16. Alternating sum property	$F(-1) = \sum_{n=0}^{\infty} (-1)^n f$
17. Initial value theorem	$F(0) = f_0$
18. Intermediate value theorem	$\left. \frac{1}{n!} \frac{d^n F(z)}{dz^n} \right _{z=0} = f_n$
19. Final value theorem	$\lim_{z\to 1} (1-z)F(z) = f_o$

3. Inverting z-transform Why we need it:

- sometimes we need to get p_i when we have G(z);
- example: queuing systems, we will see...

Methods to invert transforms: three methods

1- Develop G(z) in a power series, from which the p_i can be identified as the coefficients of the z_i . The coefficients can also be calculated by derivation (this is actually uses intermediate value theorem (property 18):

$$p_{i} = \frac{1}{i!} \frac{d^{i} G(z)}{dz^{i}} \bigg|_{z=0} = \frac{1}{i!} G^{(i)}(0)$$
(14)

- complicated when many terms are required.

- 2- By inspection: decompose G(z) in parts the inverse transforms of which are known; e.g. the partial fractions (usage of the inversion formula (see, for example, Kleinrock, "Queuing systems, Vol. I")
- 3. By a (path) integral on the complex plane

$$p_i = \frac{1}{2\pi i} \oint \frac{G(z)}{z^{i+1}} \, dz$$

path encircling the origin (must be chosen so that the poles of G(z) are outside the path)

Note: all methods are, at least, time-consuming!!!

4. Example: inverting using inspection method

Basis: partial-fraction expansion:

- technique for expressing a rational function of z as a sum of simple terms;
- the idea: get elements that are easily invertible;
- possible when G(z) is rational function of z: G(z) = N(z)/D(z);
- possible when the degree of nominator is less than that of denominator (if not, make it so!).

What we want:

• get terms like:

$$A\alpha^{i} \leftrightarrow \frac{A}{1-\alpha z} , \frac{1}{m!}(i+m)(i+m-1)\dots(i+1)\alpha^{i} \leftrightarrow \frac{1}{(1-\alpha z)^{m+1}}$$
(15)
What we then use:

• sum of the transforms equals to the transform of the sum:

$$ap_i + bq_i = aGX(z) + bG_Y(z)$$
(16)

Assumptions:

• D(z) in G(z) = N(z)/D(z) is already in factored form:

$$D(z) = \prod_{l=1}^{k} (1 - \alpha_l z)^{m_l}$$
(17)

- *I*th root is at $1/\alpha_l$ occurring m_l times.

• Note: putting D(z) in the factored form can be complicated.

If above is satisfied you may get F(z) in the following form:

In the general form below: *I*th root is at $1/\alpha_1$ occurring m_1 times

$$G(z) = \frac{A_{11}}{(1-\alpha_1 z)^{m_1}} + \frac{A_{12}}{(1-\alpha_1 z)^{m_1-1}} + \dots + \frac{A_{1m_1}}{(1-\alpha_1 z)} + \frac{A_{21}}{(1-\alpha_2 z)^{m_2}} + \frac{A_{22}}{(1-\alpha_2 z)^{m_2-1}} + \dots + \frac{A_{2m_2}}{(1-\alpha_2 z)^{m_2-1}} + \dots + \frac{A_{km_k}}{(1-\alpha_k z)^{m_k}} + \frac{A_{k2}}{(1-\alpha_k z)^{m_k-1}} + \dots + \frac{A_{km_k}}{(1-\alpha_k z)}$$
(18)

where coefficients are given by

$$A_{lj} = \frac{1}{(j-1)!} \left(-\frac{1}{\alpha_l}\right)^{j-1} \frac{d^{j-1}}{dz^{j-1}} \left((1-\alpha_l z)^{m_l} \frac{N(z)}{D(z)} \right) \bigg|_{z=1/\alpha_l}$$
(19)

Multiplying by $(1 - \alpha_l z)^{m_l}$ discards multi- root $z = 1/\alpha_l$ in denominator and thus the expression at $z = 1/\alpha_l$ is unambiguous

Example:

$$G(z) = \left(\frac{4z^2(1-8z)}{(1-4z)(1-2z)^2}\right)$$
(20)

Do the following:

- observe that denominator and nominator have the same degree (i.e. 3);
 - we have to put it in a proper form (degree of nominator must be strictly less);
 - to do so factor out two powers of z to get:

$$G(z) = z^{2} \left(\frac{4(1-8z)}{(1-4z)(1-2z)^{2}} \right)$$
(21)

• denote the rest by R(z):

$$R(z) = \frac{4(1-8z)}{(1-4z)(1-2z)^2}$$
(22)

- there are three poles of denominator: single pole z = 1/4 and double pole z = 1/2; - we have k = 2, $\alpha_1 = 4$, $m_1 = 1$, $\alpha_2 = 2$, $m_2 = 2$.

• now we can rewrite $R(z) = [4(1 - 8z)]/[(1 - 4z)(1 - 2z)^2]$ as

$$R(z) = \frac{4(1-8z)}{(1-4z)(1-2z)^2} = \frac{A_{11}}{1-4z} + \frac{A_{21}}{(1-2z)^2} + \frac{A_{22}}{1-2z}$$
(23)

• get elements A_{11} , A_{21} and A_{22} as follows:

$$A_{11} = (1 - 4z)Q(z)|_{z = \frac{1}{4}} = \frac{4\left(1 - \left(\frac{8}{4}\right)\right)}{\left(1 - \left(\frac{2}{4}\right)\right)^2} = -16$$
$$A_{21} = (1 - 2z)^2 R(z)|_{z = \frac{1}{2}} = \frac{4\left(1 - \left(\frac{8}{2}\right)\right)}{(1 - (4/2))} = 12$$
(24)

$$A_{22} = -\frac{1}{2} \frac{d}{dz} (1 - 2z)^2 R(z) \Big|_{z = \frac{1}{2}} = -\frac{1}{2} \frac{d}{dz} \frac{4(1 - 8z)}{(1 - 4z)} \Big|_{z = \frac{1}{2}} = -\frac{1}{2} \frac{(1 - 4z)(-32) - 4(1 - 8z)(-4)}{(1 - 4z)^2} = 8$$

• we get the following expression for R(z):

$$R(z) = -\frac{16}{1-4z} + \frac{12}{(1-2z)^2} + \frac{8}{1-2z}$$

Lecture: Laplace and Z transforms

(25)

- check that you got the same as initially had (place terms under common denominator);
- now we can invert R(z) by inspection:
 - first and third terms are in the form: $A \alpha^i \Leftrightarrow A/(1 \alpha z)$;

$$\frac{16}{1-4z} \Leftrightarrow -16(4)^{i}$$
$$\frac{8}{1-2z} \Leftrightarrow 8(2)^{i}$$

- second term is in the form: $(1/m!)(i + m)(i + m - 1) \dots (i + 1) \alpha^i \Leftrightarrow 1/(1 - \alpha z)^{m+1}$;

$$\frac{12}{(1-2z)^2} \Leftrightarrow 12(i+1)(2)^i$$

- using the linearity $ag_i + bq_i = aG_X(z) + bG_Y(z)$ we get:

$$R(z) \leftrightarrow q_i = \begin{cases} 0 & i < 0\\ -16(4)^i + 12(i+1)(2)^i + 8(2)^i & i = 0, 1, \dots \end{cases}$$
(26)

- using property 8 we take into account factor z^2 in R(z):

$$p_i = -16(4)^{i-2} + 12(i-1)(2)^{i-2} + 8(2)^{i-2} \quad i = 2,3, \dots$$
 (27)

- finally optimizing the expression we have for p_i :

$$p_i = 0, \quad i < 2, p_i = (2i - 1)(2)^i - (4)^i \qquad i = 2, 3, ...$$
(28)

Notes: other examples are in detail in R. Gabel, R. Roberts, "Signals and linear systems".

Lecture: Laplace and Z transforms

 $(\mathbf{0} \mathbf{0})$

More Examples:

$$G(z) = \frac{1}{1 - z^2} = 1 + z^2 + z^4 + \cdots$$

$$\Rightarrow \qquad p_i = \begin{cases} 1 & for \ i \ even \\ 0 & for \ i \ odd \end{cases}$$

Example 2

$$G(z) = \frac{1}{(1-z)(2-z)} = \frac{2}{1-z} - \frac{2}{2-z} = \frac{2}{1-z} - \frac{1}{1-z/2}$$

Since $\frac{A}{1-az}$ corresponds to sequence $A \cdot a^{i}$ we deduce

$$p_i = 2 \cdot (1)^i - 1 \cdot \left(\frac{1}{2}\right)^i = 2 - \left(\frac{1}{2}\right)^i$$

3. The Laplace transform

Assume: we are given continuous function f(t) defined on nonzero values:

$$f(t) = 0, t < 0 \tag{29}$$

What we want: compress it into a single one such that:

- it passes unchanged through the system;
- we can decompress it.

Do the following:

- tag each value of f(t) multiplying by e^{-st} :
 - why e^{-st} : *t* is unique, thus, e^{-st} is unique for each f(t);
 - why e^{-st}: exponentials pass through linear time-invariant systems unchanged.
- get a single function by integrating over all non-zero values:

$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$
(30)

- which gives two-sided Laplace transform.

Our case: since f(t) defined on nonzero values we have:

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$
(31)

• which gives **one-sided** Laplace transform (0 means 0⁻ which means 0 – ϵ for $\epsilon > 0$, $\epsilon \rightarrow 0$).

Condition of existence for Laplace transform:

- terms in a sequence must grow no faster than exponential;
- meaning that if there is real number q_a for which the following holds:

$$\lim_{\tau \to \infty} \int_0^{t^{\alpha}} |f(t)| e^{\sigma_a t} dt < 0$$
(32)

- Laplace transform exists and unique.

Analyticity of the Laplace transform:

- the integral of f(t) must be finite;
- if so, then F(s) is analytic on a right hand plane of $Re(s) \ge 0$:

$$F(0) = \int_0^\infty f(t)dt$$
(33)

3.1. Getting Laplace transform

Example: one sided exponential function:

$$f(t) = \begin{cases} Ae^{-at} & t \ge 0\\ 0 & t < 0 \end{cases}$$
(34)

• get the Laplace transform as follows

$$f(t) \leftrightarrow F(s) = \int_0^\infty Ae^{-at}e^{-st} = A \int_0^\infty e^{-(a+s)t} dt = \frac{A}{s+a}$$
(35)

Example: unit step function:

$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$
(36)

 consider it as a special case of one-sided exponential function to get:

$$u(t) \leftrightarrow F(s) = \frac{1}{s} \tag{37}$$

FUNCTION	TRANSFORM
1. $f(t)$ $t \ge 0$ \Leftrightarrow	$F^*(s) = \int_{0^-}^{\infty} f(t) e^{-st} dt$
2. $u_0(t)$ (unit impulse)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3. $u_0(t-a)$	e^{-as}
4. $u_n(t) \triangleq \frac{d}{dt} u_{n-1}(t)$	s ⁿ
5. $u_{-1}(t) \stackrel{\Delta}{=} \delta(t)$ (unit step)	$\frac{1}{s}$

FUNCTION	TRANSFORM
6. $u_{-1}(t-a)$	$\frac{e^{-as}}{s}$
7. $u_{-n}(t) \stackrel{\Delta}{=} \frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$
8. $Ae^{-at} \delta(t)$	$\frac{A}{s+a}$
9. $te^{-at} \delta(t)$	$\frac{1}{(s+a)^2}$
$10. \ \frac{t^n}{n!} e^{-at} \ \delta(t)$	$\frac{1}{(s+a)^{n+1}}$

2. Properties of the Laplace transform

Convolution property:

- consider f(t) > 0, g(t) > 0 for $t \ge 0$ only;
- denote their transforms by F(s) and G(s);
- convolution is defined as follows:

$$f(t) \odot g(t) \leftrightarrow \int_{-\infty}^{\infty} f(t-x)g(x)dx$$

- in our case the lower limit is 0^- , the upper limit is ∞ .

• derive the transform of the convolution

$$as: \int_{t=0}^{\infty} \int_{x=0}^{t} = \int_{x=0}^{\infty} \int_{t=x}^{\infty} f(t) \odot g(t) e^{-st} dt = \int_{t=0}^{\infty} \int_{x=0}^{t} f(t-x)g(x) dx e^{-st} dt$$

$$= \int_{t=0}^{\infty} \int_{x=0}^{t} f(t-x)e^{-s(t-x)} dt g(x)e^{-sx} dx = \int_{x=0}^{\infty} \int_{t=x}^{\infty} f(t-x)e^{-s(t-x)} dt g(x)e^{-sx} dx$$

$$= \int_{x=0}^{\infty} g(x)e^{-sx} dx \int_{v=0}^{\infty} f(v)e^{-sv} dv = F(s)G(s)$$
(39)

Lecture: Laplace and Z transforms

(38)

FUNCTION	TRANSFORM
1. $f(t)$ $t \ge 0$ \Leftrightarrow	$F^*(s) = \int_{0^-}^{\infty} f(t)e^{-st} dt$
2. af(t) + bg(t)	$aF^*(s) + bG^*(s)$
3. $f\left(\frac{t}{a}\right)$ (a > 0)	$aF^*(as)$
4. $f(t - a)$	$e^{-as}F^*(s)$
5. $e^{-at}f(t)$	$F^*(s + a)$
6. $tf(t)$	$-\frac{dF^*(s)}{ds}$
7. $t^n f(t)$	$(-1)^n \frac{d^n F^*(s)}{ds^n}$
8. $\frac{f(t)}{t}$	$\int_{s_1=s}^{\infty} F^*(s_1) ds_1$
9. $\frac{f(t)}{t^n}$	$\int_{s_1=s}^{\infty} ds_1 \int_{s_2=s_1}^{\infty} ds_2 \cdots \int_{s_n=s_{n-1}}^{\infty} ds_n F^*(s_n)$

FUNCTION	TRANSFORM
10. $f(t) \circledast g(t)$	$F^*(s)G^*(s)$
$11.^{\dagger} \frac{df(t)}{dt}$	$sF^*(s)$
$12.^{\dagger} \frac{d^n f(t)}{dt^n}$	
$13.^{\dagger} \int_{-\infty}^{t} f(t) dt$	$\frac{F^*(s)}{s}$
14. [†] $\int_{-\infty}^{t} \cdots \int_{-\infty}^{t} f(t)(dt)^n$ <i>n</i> times	$\frac{F^*(s)}{s^n}$
15. $\frac{\partial}{\partial a} f(t)$ [a is a parameter]	$\frac{\partial}{\partial a}F(s)$
16. Integral property	$F^{*}(0) = \int_{0^{-}}^{\infty} f(t) dt$
17. Initial value theorem	$\lim_{s \to \infty} sF^*(s) = \lim_{t \to 0} f(t)$
18. Final value theorem	$\lim_{s \to 0} sF^*(s) = \lim_{t \to \infty} f(t)$ if $sF^*(s)$ is analytic for Re $(s) \ge 0$

3.3. Two-sided Laplace transform

If f(t) may the nonzero anywhere on the axis:

$$f(t) \leftrightarrow F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$
(40)

• define the following functions:

$$f_{-}(t) = \begin{cases} f(t) & t < 0\\ 0 & t \ge 0 \end{cases}, \qquad f_{+}(t) = \begin{cases} 0 & t < 0\\ f(t) & t \ge 0 \end{cases}.$$
(41)

• one may get Laplace transform as follows:

$$f(t) = f_{-}(t) + f_{+}(t)$$
(42)

• we have the following property:

(43)
$$F(s) = F_{-}(-s) + F_{+}(s), \quad f_{-}(t) \leftrightarrow F_{-}(-s), \quad f_{+}(t) \leftrightarrow F_{+}(s)$$

4. Inverting Laplace transforms

There are the following methods:

- inspection method;
- formal inversion integral method.

Inspection method:

- use partial-fraction expansion to:
 - rewrite F(s) as a sum of terms;
 - each term should be recognizable as a transform pair.
- use linearity property to:
 - invert the transform term by term;
 - sum the result to recover f(t).

Note: we have to ensure that F(s) is a rational function of s and can be written as:

$$F(s) = N(s)/D(s)$$
(44)

Do the following:

- ensure that the degree of the nominator is less than that of denominator:
 - if this is not the case, make it so;
 - to do so divide N (s) by D(s) until the remainder is less than the degree of D(s);
 - partial-fraction expansion must be carried out for remainder;
 - powers of scan be taken into account using transform 4 (see table).

(45)

• D(s) in F(s) = N(s)/D(s) is already in factored form:

$$D(s) = \prod_{i=1}^{m} (s + \alpha_i)^{m_i}$$

- *i*th root is at $1/\alpha_i$ occurring m_i times.

• note: putting D(s) in the factored form can be complicated.

If the above satisfied:

• rewrite *F*(*s*) as follows:

$$F(s) = \frac{B_{11}}{(s + \alpha_1)^{m_1}} + \frac{B_{12}}{(s + \alpha_1)^{m_1 - 1}} + \dots + \frac{B_{1m_1}}{(s + \alpha_1)} + \frac{B_{21}}{(s + \alpha_2)^{m_2}} + \frac{B_{22}}{(s + \alpha_2)^{m_2 - 1}} + \dots + \frac{B_{2m_2}}{(s + \alpha_2)}$$
(46)

$$+ \cdots$$

$$+\frac{B_{k1}}{(s+\alpha_k)^{m_k}}+\frac{B_{k2}}{(s+\alpha_k)^{m_k-1}}+\cdots+\frac{B_{km_k}}{(s+\alpha_k)}$$

• coefficients are given by

$$B_{ij} = \frac{1}{(j-1)!} \frac{d^{j-1}}{ds^{j-1}} \left((s+\alpha_i)^{mi} \frac{N(s)}{D(s)} \right|_{s=-\alpha_i}$$
(47)

Example:

$$F(s) = \frac{8(s^2 + 3s + 1)}{(s+3)(s+1)^3} \quad .$$
(48)

- the denominator is already in factored form;
- the degree of the denominator (4) is greater than that of the nominator (2);
- we have k = 2, $\alpha_1 = 3$, $m_1 = 1$, $\alpha_2 = 1$, $m_2 = 3$;
- we write F(s) as:

$$F(s) = \frac{B_{11}}{s+3} + \frac{B_{21}}{(s+1)^3} + \frac{B_{22}}{(s+1)^2} + \frac{B_{23}}{s+1}$$
(49)

• it is easy to derive B_{11} and B_{21} :

$$B_{11} = (s+3)F(s)|_{s=-3} = 8 \frac{9-9+1}{(-2)^3} = -1$$
(50)

$$B_{21} = (s+1)^3 F(s) \Big|_{s=-1} = 8 \frac{1-3+1}{2} = -4$$
(51)

• derive *B*₂₂ differentiating as follows:

$$B_{22} = \frac{d}{ds} \frac{8(s^2 + 3s + 1)}{(s+3)} \bigg|_{s=-1}$$

= $\frac{8(s+3)(2s+3) - (s^2 + 3s + 1)(1)}{(s+3)^2} \bigg|_{s=-1}$
= $\frac{8(s^2 + 6s + 8)}{(s+3)^2} \bigg|_{s=-1} = 8 \frac{1 - 6 + 8}{s^2} = 6$ (52)

• derive B_{23} differentiating B_{22} once more (what we had prior to evaluation at s = -1):

$$B_{23} = \frac{1}{2!} \frac{d^2}{ds^2} \left(\frac{8(s^2 + 3s + 1)}{(s+3)} \right) \Big|_{s=-1} = \frac{1}{2} \left. 8 \left. \frac{d}{ds} \left(\frac{(s^2 + 6s + 8)}{(s+3)^2} \right) \right|_{s=-1} \right.$$
(53)
$$= 4 \left. \frac{(s+3)^2 (2s+6) - (s^2 + 6s + 8)(s+3)}{(s+3)^4} \right|_{s=-1} = 4 \left. \frac{2^2 4 - (1-6+8)(2)(2)}{2^4} = 1 \right.$$

finally, we have the following expression for F(s):

$$F(s) = \frac{-1}{s+3} + \frac{-4}{(s+1)^3} + \frac{6}{(s+1)^2} + \frac{1}{s+1}$$

Lecture: Laplace and Z transforms

(54)

• finally, we have after inversion:

$$f(t) = -e^{-3t} - 2t^2e^{-t} + 6e^{-t} + e^{-t} \quad t \ge 0$$

$$f(t) = 0 \quad t < 0$$
(55)

Checking for errors when doing partial-fraction expansion:

- once we have partial-fraction expansion:
 - combine terms and compare to initial expression for F(s).
- once we get f(t):
 - try to get Laplace transform and compare to F(s).

Notes: other examples are in detail in R. Gabel, R. Roberts, "Signals and linear systems".

1- Moment GF

$$M_X(\theta) = E[e^{\theta X}] = \int_{-\infty}^{\infty} e^{\theta X} dF_X(x)$$

• n-th moment $E[x^n] = m_X^{(n)}(0)$

2- Probability GF

$$P_X(z) \triangleq E(z^X) = \sum_{k=0}^{\infty} P_k z^k \quad |z| \le 1$$

Tail GF
$$Q(z) = \frac{1 - P(z)}{1 - z} P_X(x) > k$$

3- Laplace Transform of non-negative RV

$$\phi_X(s) = E[e^{-sX}] = \int_0^\infty f_X(x)e^{-sx}dx$$

• n-th moment

$$E(X^{n}) = (-1)^{n} \phi_{X}^{(n)}(0)$$

4- Characteristic function (Fourier –Stieltjes $F_X(x)$)

$$\phi_X(\omega) = E[e^{j\omega X}] = \int_{-\infty}^{\infty} e^{j\omega X} dF_X(\omega) \quad -\infty < \omega < \infty$$

Relating Moment Generating function/ Characteristic function $\phi_X(\omega) = M_X(\theta) |_{\theta=i\omega}$

Relating Probability Generating function/ Moment Generating function

Using $e^{\theta} = z$ and $g_X(z) = E(z^X)$ $g_X(e^{\theta}) = E[e^{\theta X}] = M_X(\theta)$ Using $\theta = \ln(z)$ and $g_X(z) = E(z^X)$ $M_X(\theta)|_{\ln(z)} = M_X(\ln z) = E(e^{X \ln z}) = E(e^{\ln z^X}) = E(z^X) = g_X(z)$