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OUTLINE:

• Z-transform:

– Definition;

– Properties;

– Inversion.

• Laplace

transform:

– Definition;

– Properties;

– Inversion.
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1. Why transforms
Why we  are  going  to  consider  them separately:

• most problems for those who did not take specific math

courses;

• provide a way to analyze queuing systems.

Types of  the transforms:

• Laplace transform;

• Z transform;

• Fourier transform;

• . . .

How  we  call transforms:

• just transform (referring to any transform);

• Z-transform: (probability) generating function;

• Laplace transform: Laplace-Stieltjes transform.
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Why we  are  going  to  use transforms:

• they naturally appear in analysis of queues;

• they simplify the calculation;

• sometimes they are the only tool.

What kind  of  transforms  we  are  going  to consider:

• Laplace transform for continuous RVs;

• Z transform for discrete RVs.

We  basically follow:

• L. Kleinrock, ”Queuing systems, Volume I: Theory,” John Wiley & 

Sons;

• R. Gabel, R. Roberts, ”Signals and linear systems,” John Wiley &

Sons;

• Internet, e.g. www.wikipedia.org
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2. Z transform
Assume:  we are given discrete function defined on RV X , which takes 
nonnegative values , X  ∈{0, 1, 2, . ..}.

Denote the point probabilities by pi  
(1)

What we  want:  compress it into a single one such that:

• it passes unchanged through the system;

• we can decompress it.

Do the following:

• tag each value in sequence multiplying by 𝑧 𝑖 :

– why 𝑧 𝑖 :  i is unique, thus, 𝑧 𝑖 is unique for each 𝑝𝑖.

• get a single function depending on z  only G(z) (or GX(z); also X (z)  or ෠𝑋(z) ) by 

summing all terms:

𝐺 𝑧 = 𝐺𝑋(𝑧) =෍

𝑖=0

∞

𝑝𝑖𝑧
𝑖 = 𝐸[𝑧𝑋]

(2)

– which is called z-transform (or generating function or geometric

transform).
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2. Z transform

Rationale

• A handy way to record all the values {p0, p1, . . .}; z is a ‘bookkeeping 

variable’

• Often G(z) can be explicitly calculated (a simple analytical  expression)

• When G(z) is given, one can conversely deduce the values {p0, p1, . . .}

• Some operations on distributions correspond to much simpler operations 

on the generating  functions

• Often simplifies the solution of recursive  equations
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Condition  of  existence  for z-transform:

• terms in a sequence grow no faster than geometrically;

• meaning that if there is a >  0 for which the following holds:

(3)

– for this sequence z-transform is unique.

Analyticity:

• the sum of all terms in 𝑝𝑖 must be finite;

• if so, then G (z) is analytic on a unit circle |z|≤ 1;

• in this case we have:

(4)

Note:  analyticity means that the function has unique derivative.
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lim
𝑖→∞

𝑝𝑖
𝑎𝑖

= 0

G 1 = σ𝑖=0
∞ 𝑝𝑖
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(5)

(6)

1. Getting z-transforms

Delta function 𝛿i =  1, i =  0, 𝛿i =  0, i ≠ 0:

• since the only one term is non-zero corresponding to i =  0 we

have:

𝛿𝑖 ↔ 𝑧0 = 1

Delta function  shifted  by k: 𝛿i−k =  1, i =  k, 𝛿i =  0, i ≠ k:

• since the only one term is non-zero corresponding to i =  k we

have:

𝛿𝑖−𝑘 ↔ 𝑧𝑘

Unit step function: ui = 1, i = 0, 1, . . . :

• recall that ui=  0 for i < 0;

• we have geometric series:
(7)
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𝑢𝑖 ↔ ෍

𝑖=0

∞

1𝑧𝑖 =
1

1 − 𝑧
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Geometric series: p i = A𝛼i, i = 0, 1, . . . :

• calculate z-transform as follows:

(8)

• therefore, we have:

(9)

• z-transform is analytic for |z|≤ 1 / 𝛼.

Arbitrary sequence: { p0 = −2, p1 = 0, p2 = 4, p3 = −6 }:

• calculate z-transform as follows:
(10)
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𝐺(𝑧) = ෍

𝑖=0

∞

𝐴𝛼𝑖𝑧𝑖 = 𝐴෍

𝑖=0

∞

(𝛼𝑧)𝑖 =
𝐴

1 − 𝛼𝑧

𝐺 𝑧 = ෍

𝑖=0

3

𝑝𝑖𝑧
𝑖 = −2 + 4𝑧2 − 6𝑧3

𝑝𝑖 = 𝐴𝛼𝑖 ↔
𝐴

1 − 𝛼𝑧
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2. Properties of z-transform

Convolution property: Let X and Y   be independent random variables  with 

corresponding distributions: 

𝑝𝑖= P{X = i} >0   i = 0, 1, . . . ; 

𝑞𝑗= P{Y = j} >0     j = 0, 1, . . . ;

• denote their transforms by GX(z) and GY(z);

• convolution is defined as follows:   𝑝𝑖⨀𝑞𝑖 ↔ σ𝑘=0
𝑖 𝑝𝑖−𝑘𝑞𝑘

(11)

• derive the transform of the convolution as:

𝑝𝑖⨀𝑞𝑖 ↔෍

𝑖=0

∞

𝑝𝑖⨀𝑞𝑖 𝑧
𝑖 =෍

𝑖=0

∞

෍

𝑘=0

𝑖

𝑝𝑖−𝑘𝑞𝑘𝑧
𝑖−𝑘𝑧𝑘 (12)

• change the summation σ𝑖=0
∞ σ𝑘=0

𝑖 =σ𝑘=0
∞ σ𝑖=𝑘

∞
to get as:

𝑝𝑖⨀𝑞𝑖 ↔ ෍

𝑘=0

∞

𝑞𝑘𝑧
𝑘෍

𝑖=𝑘

∞

𝑝𝑖−𝑘𝑧
𝑖−𝑘 = ෍

𝑘=0

∞

𝑞𝑘𝑧
𝑘 ෍

𝑚=0

∞

𝑝𝑚𝑧
𝑚 = 𝐺𝑋 𝑧 𝐺𝑌(𝑧)

(13)
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3. Inverting z-transform Why we  need it:

• sometimes we need to get p i when we have G (z);

• example: queuing systems, we will see...

Methods  to  invert transforms: three methods

1- Develop G(z) in a power series, from which the p i can be identified as the 

coefficients of  the z i. The coefficients can also be calculated by  derivation (this 

is actually uses intermediate value theorem (property 18):

(14)

– complicated when many terms are required.
2- By inspection: decompose G(z) in parts the inverse transforms of which are   known;

e.g. the partial fractions (usage of the inversion formula (see, for example, Kleinrock, ”Queuing systems, Vol. I  ”))

3. By a (path) integral on the complex  plane

𝑝𝑖 =
1

2𝜋𝑖
ර
𝐺(𝑧)

𝑧𝑖+1
𝑑𝑧

Note:  all methods are, at least, time-consuming!!!
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𝑝𝑖 = อ
1

𝑖!

𝑑𝑖𝐺 𝑧

𝑑𝑧𝑖
𝑧=0

=
1

𝑖!
𝐺 𝑖 0

path encircling the origin (must be chosen so  

that the poles of G(z) are outside the  path)
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4. Example: inverting using inspection method

Basis:  partial-fraction expansion:

• technique for expressing a rational function of z  as a sum of simple terms;

• the idea: get elements that are easily invertible;

• possible when G (z) is rational function of z: G (z) = N (z)/D(z);

• possible when the degree of nominator is less than that of denominator (if not, make it 

so!).

What we want:

• get terms like: 

𝐴𝛼𝑖 ↔
𝐴

1−𝛼𝑧
,  

1

𝑚!
𝑖 + 𝑚 𝑖 + 𝑚 − 1 … 𝑖 + 1 𝛼𝑖 ↔

1

(1−𝛼𝑧)𝑚+1
(15)

What we  then use:

• sum of the transforms equals to the transform of the sum:

𝑎𝑝𝑖 + 𝑏𝑞𝑖 = 𝑎𝐺𝑋 𝑧 + 𝑏𝐺𝑌(𝑧) (16)
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Assumptions:

• D(z) in G (z) = N (z)/D(z) is already in factored form:

(17)

– l th  root is at 1 / 𝛼l occurring ml times.

• Note:  putting D(z) in the factored form can be complicated.

Lecture:  Laplace and Z transforms 17

𝐷 𝑧 = ෑ

𝑙=1

𝑘

(1 − 𝛼𝑙𝑧)
𝑚𝑙
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If  above  is  satisfied  you  may  get F (z) in  the following form:

In the general form below: l th root is at 1 / 𝛼l  occurring ml times

(18)

where coefficients are given by

(19)

Lecture:  Laplace and Z transforms 18

G 𝑧 =
𝐴11

(1−𝛼1𝑧)𝑚1

+
𝐴12

(1−𝛼1𝑧)𝑚1
−1 +⋯+

𝐴1𝑚1

1−𝛼1𝑧
+

𝐴21

1−𝛼2𝑧 𝑚
2

+
𝐴22

1−𝛼2𝑧 𝑚
2
−1 +⋯

+
𝐴2𝑚2

1 − 𝛼2𝑧
+ ⋯+

𝐴𝑘1
1 − 𝛼𝑘𝑧

𝑚
𝑘

+
𝐴𝑘2

1 − 𝛼𝑘𝑧
𝑚

𝑘
−1 +⋯+

𝐴𝑘𝑚𝑘

(1 − 𝛼𝑘𝑧)

𝐴𝑙𝑗 = อ
1

𝑗 − 1 !
(−

1

𝛼𝑙
)𝑗−1

𝑑𝑗−1

𝑑𝑧𝑗−1
1 − 𝛼𝑙𝑧

𝑚𝑙
𝑁 𝑧

𝐷(𝑧)
𝑧=1/𝛼𝑙

Multiplying by                          discards multi- root z= 1 / 𝛼l in denominator and thus the expression 
at z= 1 / 𝛼l is unambiguous

1 − 𝛼𝑙𝑧
𝑚𝑙
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Example:

(20)

Do the following:

• observe that denominator and nominator have the same degree (i.e. 3);

– we have to put it in a proper form (degree of nominator must be strictly less);

– to do so factor out two powers of z  to get:

(21)

• denote the rest by R(z):

(22)

– there are three poles of denominator: single pole z =  1 /4 and double pole z = 1/2;

– we have k = 2, 𝛼1 = 4, m1 = 1, 𝛼2 = 2, m2 = 2.
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𝐺 𝑧 = 𝑧2
4 1 − 8𝑧

1 − 4𝑧 1 − 2𝑧 2

𝐺 𝑧 =
4𝑧2 1 − 8𝑧

1 − 4𝑧 1 − 2𝑧 2

𝑅 𝑧 =
4 1 − 8𝑧

(1 − 4𝑧)(1 − 2𝑧)2
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• now we can rewrite R(z) = [4(1 − 8z)]/[(1 − 4z)(1 − 2z)2] as

(23)

• get elements A11, A21  and A22  as follows:

(24)

• we get the following expression for R(z): (25)
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𝑅 𝑧 =
4 1 − 8𝑧

(1 − 4𝑧)(1 − 2𝑧)2
=

𝐴11
1 − 4𝑧

+
𝐴21

(1 − 2𝑧)2
+

𝐴22
1 − 2𝑧

𝐴11= 1 − 4𝑧 ȁ𝑄 𝑧
𝑧=

1
4
=

4 1 −
8
4

1 −
2
4

2 = −16

𝐴21 = 1 − 2𝑧 2 ቚ𝑅 𝑧
𝑧=

1
2

=

4 1 −
8
2

(1 − (4/2))
= 12

𝐴22 = −
1

2

𝑑

𝑑𝑧
1 − 2𝑧 2 ቚ𝑅 𝑧

𝑧=
1
2

= ቤ−
1

2

𝑑

𝑑𝑧

4 1 − 8𝑧

1 − 4𝑧
𝑧=

1
2

= −
1

2

1 − 4𝑧 −32 − 4 1 − 8𝑧 −4

1 − 4𝑧 2
= 8

𝑅 𝑧 = −
16

1 − 4𝑧
+

12

1 − 2𝑧 2 +
8

1 − 2𝑧



Teletraffic theory I: Queuing theory

• check that you got the same as initially had (place terms under common

denominator);

• now we can invert R(z) by inspection:

– first and third terms are in the form: A 𝛼i ⇔ A/(1 −𝛼z);

−
16

1−4𝑧
⇔−16 4 𝑖

8

1−2𝑧
⇔8 2 𝑖

– second term is in the form: (1/m!)(i + m)(i + m − 1) . . . (i + 1) 𝛼i ⇔ 1/(1 −

𝛼z)m+1;

12

1−2𝑧 2 ⇔12 𝑖 + 1 2 𝑖

Lecture:  Laplace and Z transforms 21



Teletraffic theory I: Queuing theory

(26)

– using property 8 we take into account factor z2  in R (z):

(27)

– finally optimizing the expression we have for p i:

(28)

Notes:  other examples are in detail in R. Gabel, R. Roberts, ”Signals 

and linear systems”.
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𝑅 𝑧 ↔ 𝑞𝑖 = ቊ
0 𝑖 < 0

−16 4 𝑖 + 12 𝑖 + 1 2 𝑖 + 8 2 𝑖 𝑖 = 0,1, …

𝑝𝑖 = −16 4 𝑖−2 + 12 𝑖 − 1 2 𝑖−2 + 8 2 𝑖−2 𝑖 = 2,3,…

𝑝𝑖 = 0, 𝑖 < 2,
𝑝𝑖 = 2𝑖 − 1 2 𝑖 − 4 𝑖 𝑖 = 2,3, …

– using the linearity agi + bqi = aGX(z) + bGY(z) we get:



More Examples:

⇒

Example 2

Since corresponds to sequence A · ai we deduce

𝐺 𝑧 =
1

1 − 𝑧2
= 1 + 𝑧2 + 𝑧4 + ⋯

𝑝𝑖 = ቊ
1 𝑓𝑜𝑟 𝑖 𝑒𝑣𝑒𝑛
0 𝑓𝑜𝑟 𝑖 𝑜𝑑𝑑

𝐺 𝑧 =
1

(1 − 𝑧)(2 − 𝑧)
=

2

1 − 𝑧
−

2

2 − 𝑧
=

2

1 − 𝑧
−

1

1 − 𝑧/2

𝐴

1 − 𝑎𝑧

𝑝𝑖 = 2 . (1)𝑖−1 .
1

2

𝑖

= 2 −
1

2

𝑖

23
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3. The Laplace transform
Assume:  we are given continuous function f (t) defined on nonzero

values:
(29)

(30)

What we  want:  compress it into a single one such that:

• it passes unchanged through the system;

• we can decompress it.

Do the following:

• tag each value of f (t) multiplying by e−st:

– why e−st:  t is unique, thus, e−st  is unique for each f (t);

– why e−st:  exponentials pass through linear time-invariant systems unchanged.

• get a single function by integrating over all non-zero values:

𝐹 𝑠 = ∞−׬
∞
𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

– which gives two-sided Laplace transform.

Lecture:  Laplace and Z transforms 24

𝑓 𝑡 = 0, 𝑡 < 0
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Our case:  since f (t) defined on nonzero values we have:

(31)

• which gives one-sided  Laplace transform (0 means 0−  which means 0 − 𝜖 for 𝜖> 0, 

𝜖→ 0).

Condition  of  existence  for  Laplace transform:

• terms in a sequence must grow no faster than exponential;

• meaning that if there is real number 𝜎𝑎 for which the following holds:
(32)

– Laplace transform exists and unique.

Analyticity of  the  Laplace transform:

• the integral of f (t) must be finite;

• if so, then F(s) is analytic on a right hand plane of Re(s) ≥ 0:

(33)

Lecture:  Laplace and Z transforms 25

𝐹 𝑠 = න
0

∞

𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

lim
𝜏→∞

න
0

𝜏

𝑓(𝑡) 𝑒𝜎𝑎𝑡𝑑𝑡 < 0

𝐹 0 = න
0

∞

𝑓(𝑡)𝑑𝑡



Teletraffic theory I: Queuing theory

3.1. Getting Laplace transform

Example:  one  sided  exponential function:

(34)

• get the Laplace transform as follows

. (35)

Example:  unit  step function:

(36)

• consider it as a special case of one-sided exponential function to

get:

(37)
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𝑓 𝑡 = ቊ 𝐴𝑒
−𝑎𝑡 𝑡 ≥ 0

0 𝑡 < 0

𝑓 𝑡 ↔ 𝐹 𝑠 = න
0

∞

𝐴𝑒−𝑎𝑡𝑒−𝑠𝑡 = 𝐴න
0

∞

𝑒−(𝑎+𝑠)𝑡 𝑑𝑡 =
𝐴

𝑠 + 𝑎

𝑢 𝑡 = ቊ
1 𝑡 ≥ 0
0 𝑡 < 0

𝑢 𝑡 ↔ 𝐹 𝑠 =
1

𝑠
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2. Properties of the Laplace

transform

Convolution property:

• consider f (t) > 0, g(t) > 0 for t ≥ 0 only;

• denote their transforms by F(s) and

G(s);

• convolution is defined as follows: (38)

– in our case the lower limit is 0− ,  the upper limit is ∞.

• derive the transform of the convolution

as:׬𝑡=0
∞

𝑥=0׬
𝑡

= 𝑥=0׬
∞

𝑡=𝑥׬
∞

(39)
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𝑓 𝑡 ⊙ 𝑔(𝑡) ↔ න
−∞

∞

𝑓(𝑡 − 𝑥)𝑔(𝑥)𝑑𝑥

𝑓 𝑡 ⊙ 𝑔 𝑡 ↔ න
𝑡=0

∞

𝑓 𝑡 ⊙ 𝑔(𝑡) 𝑒−𝑠𝑡𝑑𝑡 = න
𝑡=0

∞

න
𝑥=0

𝑡

𝑓 𝑡 − 𝑥 𝑔 𝑥 𝑑𝑥 𝑒−𝑠𝑡𝑑𝑡

= න
𝑡=0

∞

න
𝑥=0

𝑡

𝑓 𝑡 − 𝑥 𝑒−𝑠 𝑡−𝑥 𝑑𝑡 𝑔 𝑥 𝑒−𝑠𝑥𝑑𝑥 = න
𝑥=0

∞

න
𝑡=𝑥

∞

𝑓 𝑡 − 𝑥 𝑒−𝑠 𝑡−𝑥 𝑑𝑡 𝑔 𝑥 𝑒−𝑠𝑥𝑑𝑥

= න
𝑥=0

∞

𝑔 𝑥 𝑒−𝑠𝑥𝑑𝑥න
𝑣=0

∞

𝑓 𝑣 𝑒−𝑠𝑣𝑑𝑣 = 𝐹 𝑠 𝐺 𝑠
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3.3.  Two-sided Laplace transform

If f (t) may the nonzero  anywhere  on  the axis:

(40)

• define the following functions:

. (41)

(42)

• one may get Laplace transform as follows:

• we have the following property:

(43)
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𝑓 𝑡 ↔ 𝐹 𝑠 = න
−∞

∞

𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

𝑓− 𝑡 = ቊ
𝑓 𝑡 𝑡 < 0
0 𝑡 ≥ 0

, 𝑓+ 𝑡 = ቊ
0 𝑡 < 0
𝑓 𝑡 𝑡 ≥ 0

𝑓 𝑡 = 𝑓− 𝑡 + 𝑓+ 𝑡

𝐹 𝑠 = 𝐹− −𝑠 + 𝐹+ 𝑠 , 𝑓− 𝑡 ↔ 𝐹− −𝑠 , 𝑓+ 𝑡 ↔ 𝐹+ 𝑠
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4. Inverting Laplace transforms

There  are  the  followingmethods:

• inspection method;

• formal inversion integral method.

Inspection method:

• use partial-fraction expansion to:

– rewrite F(s) as a sum of terms;

– each term should be recognizable as a transform pair.

• use linearity property to:

– invert the transform term by term;

– sum the result to recover f (t).

Note:  we have to ensure that F(s) is a rational function of s and can be written as:

(44)
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𝐹 𝑠 = 𝑁(𝑠)/ 𝐷(𝑠)
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Do the following:

• ensure that the degree of the nominator is less than that of denominator:

– if this is not the case, make it so;

– to do so divide N (s) by D(s) until the remainder is less than the degree of

D(s);

– partial-fraction expansion must be carried out for remainder;

– powers of s can be taken into account using transform 4 (see table).

• D(s) in F (s) = N (s)/D(s) is already in factored form:

(45)

– i th  root is at 1 / 𝛼i  occurring mi times.

• note:  putting D(s) in the factored form can be complicated.
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𝐷 𝑠 = ෑ

𝑖=1

𝑘

(𝑠 + 𝛼𝑖)
𝑚𝑖
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If  the  above satisfied:

• rewrite F (s) as follows:

(46)

• coefficients are given by

(47)
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𝐹 𝑠 =
𝐵11

(𝑠 + 𝛼1)
𝑚

1

+
𝐵12

(𝑠 + 𝛼1)
𝑚

1
−1

+⋯+
𝐵1𝑚

1

𝑠 + 𝛼1

+
𝐵21

𝑠 + 𝛼2
𝑚

2

+
𝐵22

𝑠 + 𝛼2
𝑚

2
−1

+⋯+
𝐵2𝑚

2

𝑠 + 𝛼2

+⋯

+
𝐵𝑘1

𝑠 + 𝛼𝑘
𝑚

𝑘

+
𝐵𝑘2

𝑠 + 𝛼𝑘
𝑚

𝑘
−1

+⋯+
𝐵𝑘𝑚

𝑘

(𝑠 + 𝛼𝑘)

𝐵𝑖𝑗 = อ
1

𝑗 − 1 !

𝑑𝑗−1

𝑑𝑠𝑗−1
( 𝑠 + 𝛼𝑖

𝑚𝑖
𝑁(𝑠)

𝐷(𝑠)
𝑠=−𝛼𝑖
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Example:

. (48)

• the denominator is already in factored form;

• the degree of the denominator (4) is greater than that of the nominator (2);

• we have k =  2, α1 =  3, m1 =  1, α2 =  1, m2 = 3;

• we write F (s) as:

(49)

• it is easy to derive B11  and B21:

(50)

(51)
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𝐹 𝑠 =
8 𝑠2 + 3𝑠 + 1

(𝑠 + 3)(𝑠 + 1)3

𝐹 𝑠 =
𝐵11
𝑠 + 3

+
𝐵21

(𝑠 + 1)3
+

𝐵22
(𝑠 + 1)2

+
𝐵23
𝑠 + 1

𝐵11 = 𝑠 + 3 ȁ𝐹(𝑠) 𝑠=−3 = 8
9 − 9 + 1

−2 3
= −1

𝐵21 = (𝑠 + 1)3 ቚ𝐹(𝑠)
𝑠=−1

= 8
1 − 3 + 1

2
= −4
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• derive B22  differentiating as follows:

(52)

• derive B23  differentiating B22  once more (what we had prior to evaluation at s = −1):

(53)

• finally, we have the following expression for F(s): (54)
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𝐵22 =
𝑑

𝑑𝑠
อ

8 𝑠2 + 3𝑠 + 1

(𝑠 + 3)
𝑠=−1

= อ
8 𝑠 + 3 2𝑠 + 3 − 𝑠2 + 3𝑠 + 1 1

𝑠 + 3 2

𝑠=−1

= อ
8 𝑠2 + 6𝑠 + 8

𝑠 + 3 2

𝑠=−1

= 8
1 − 6 + 8

𝑠2
= 6

𝐵23 =
1

2!

𝑑2

𝑑𝑠2
ቤ

8 𝑠2 + 3𝑠 + 1

𝑠 + 3
𝑠=−1

= อ
1

2
8

𝑑

𝑑𝑠

𝑠2 + 6𝑠 + 8

𝑠 + 3 2

𝑠=−1

= 4 อ
𝑠 + 3 2 2𝑠 + 6 − 𝑠2 + 6𝑠 + 8 𝑠 + 3

𝑠 + 3 4

𝑠=−1

= 4
224 − 1 − 6 + 8 2 2

24
= 1

𝐹 𝑠 =
−1

𝑠 + 3
+

−4

(𝑠 + 1)3
+

6

(𝑠 + 1)2
+

1

𝑠 + 1
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• finally, we have after inversion:

(55)

Checking  for  errors  when  doing  partial-fractionexpansion:

• once we have partial-fraction expansion:

– combine terms and compare to initial expression for F (s).

• once we get f (t):

– try to get Laplace transform and compare to F (s).

Notes:  other examples are in detail in R. Gabel, R. Roberts, ”Signals and linear

systems”.
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𝑓 𝑡 = −𝑒−3𝑡 − 2𝑡2𝑒−𝑡 + 6𝑒−𝑡 + 𝑒−𝑡 𝑡 ≥ 0

𝑓 𝑡 = 0 𝑡 < 0



Generating functions: synopsis

1- Moment GF

𝑀𝑋 𝜃 = 𝐸 𝑒𝜃𝑋 = ∞−׬
∞
𝑒𝜃𝑋𝑑𝐹𝑋 𝑥

• n-th moment  𝐸 𝑥𝑛 = 𝑚𝑋
𝑛

0
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2- Probability GF

𝑃𝑋 𝑧 ≜ 𝐸 𝑧𝑋 = σ𝑘=0
∞ 𝑃𝑘𝑧

𝑘 𝑧 ≤ 1

• Tail GF          Q(z)= 
)1−𝑃(𝑧

1−𝑧
𝑃𝑋 𝑥 >k



Generating functions: synopsis

3- Laplace Transform of non-negative RV

𝜙𝑋 𝑠 = 𝐸 𝑒−𝑠𝑋 = න

0

∞

𝑓𝑋 𝑥 𝑒−𝑠𝑥𝑑𝑥

• n-th moment

𝐸 𝑋𝑛 = −1 𝑛𝜙𝑋
𝑛

0

Lecture:  Laplace and Z transforms 40

4- Characteristic function (Fourier –Stieltjes 𝐹𝑋 𝑥 )

𝜙𝑋 𝜔 = 𝐸 𝑒𝑗𝜔𝑋 = ∞−׬
∞
𝑒𝑗𝜔𝑥𝑑𝐹𝑋 𝜔 −∞ < 𝜔 < ∞



Generating functions: synopsis

Relating Moment Generating function/ Characteristic function 
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𝜙𝑋 𝜔 = 𝑀𝑋 𝜃 ȁ𝜃=𝑖𝜔

Relating Probability Generating function/ Moment Generating 
function 

𝑒𝜃 = 𝑧 𝑔𝑋 𝑧 = 𝐸 𝑧𝑋Using                                              and

𝑔𝑋 𝑒𝜃 = 𝐸 𝑒𝜃𝑋 = 𝑀𝑋 𝜃

Using                                              and𝜃 = ln 𝑧 𝑔𝑋 𝑧 = 𝐸 𝑧𝑋

𝑀𝑋 𝜃 ȁln(𝑧) = 𝑀𝑋(ln )𝑧 = 𝐸 𝑒𝑋 ln 𝑧 = 𝐸 𝑒ln 𝑧
𝑋

= 𝐸 𝑧𝑋 = 𝑔𝑋 𝑧


