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5. Functions of a Random Variable

Let X be ar.v defined on the model (©,F,P), and suppose
g(x) is a function of the variable x. Define

Y =g(X). (5-1)

IS Y necessarily a r.v? If so what is its PDF F, (y), pdf f, (y)?

(5-2) 2
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In particular
F () =P(Y(£) <y) =P(g(X(£) < y)=P(X (&) < g (~o0,y]). (5-3)

Thus the distribution function as well of the density
function of Y can be determined in terms of that of X.
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Special case:
Theorem: Suppose that g(X) is a function of a
random variable X, & the probability mass function of
X is p,(x). Then the expected value of g(X) Is

E[g(X)]=2.9(X)p, (x)



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x)
-2 0.1
-1 0.2
1 0.3

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) Yy Dy
2 01
1 0.2
1 0.3

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y by
2 01 1 05 |
1 02

1 0.3

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) Yy Dy
-2 0.1 1 05
1 02 4 05 |
1 03

2 04




Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y p(y) yp(y)
-2 0.1 1 05 0.5
-1 0.2 4 05 2.0
1 0.3

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y p(y) yp(y)
-2 0.1 1 05 0.5
-1 0.2 4 05 2.0
1 0.3 E(Y)= 2.5

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y
2 0.1 4
-1 0.2 1
1 0.3 1
2 0.4 4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) Yy  ypB(X)
2 0.1 4 0.4
1 0.2 1 0.2
1 0.3 1 0.3
2 0.4 4 1.6



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) Yy  ypB(X)
2 0.1 4 0.4
1 0.2 1 0.2
1 0.3 1 0.3
2 0.4 4 1.6



General case:
Now, we would like to find the distribution of Y=g(X)

Method 1
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Example 5.1: Y =aX +b (5-4)
Solution: Suppose a > 0.

R (y)=P((§)<y)=P@x()+b<y)= P(X(é) < %b] =F, (VT‘b] . (5-5)
and
()= (y b] (5-6)

d

On the other hand If a <0, then
F,(y) = P(Y (&) < y)= P(aX (&) +b< y)= P(X@) >y7‘bj

=1-F (yabj (5-7)
and hence

_ 1. (y-b
fY(y)_ a fx( a j (5-8)
15
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From (5-6) and (5-8), we obtain (for all a)

y—Db
ey (5-9)
Example 5.2: Y = X?2. (5-10)
R (y)=P(Y (&) < y)=P(X?(&) < y). (5-11)

If y<0, thentheevent {x?¢)<y}=¢ and hence
F,(y)=0, y<O0. (5-12)

For y >0, from Fig. 5.1, the event {¥ (&) < y}={X?(&) <y}
IS equivalent to {x, < X (&) < x,}.
AY =X2

16
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Hence

F (YY) =P(x, < X(£) < %)= Fy (X,) — Fy (%)
=F,(WY)—Fc(=4y), y>O0. (5-13)

By direct differentiation, we get

(1
L =2y W) v>o

0, otherwise.

(5-14)

If f,(x) represents an even function, then (5-14) reduces to

f, (¥) = % A (5-15)
In particular iIf X~ N (0,1), so that
f (X)) = J%exzfz, (5-16)

17
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and substituting this into (5-14) or (5-15), we obtain the
p.d.f of y = X2 to be (5-17)

e YU (y).

1
fY (y) — \/ﬁ
On comparing this with (3-36), we notice that (5-17)
represents a Chi-square r.v with n = 1, since r@/2)=+x.
Thus, If X 1s a Gaussian r.v with =0, then vy = x?2

represents a Chi-square r.v with one degree of freedom
(n=1).

18
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Method 2

19



Note: As a general approach, given v = g(X), first sketch
the graph y = g(x), and determine the range space of y.
Suppose a < y < b Is the range space of y = g(x).

Then clearly for y<a, K (y)=0, and for y>b, F,(y)=1 SO
that F,(y) can be nonzero only in a<y<h. Next, determine
whether there are discontinuities in the range space of y. If
so evaluate P(Y(&)=y,) atthese discontinuities. In the
continuous region of y, use the basic approach

R () =P(a(X(&) <)

and determine appropriate events in terms of the r.v X for
every y. Finally, we must have F,(y) for —w<y<+w, and

obtain

dF, (y)

fY (Y) — dy

iIn a<y<h.
20
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However, If Y =g(X) IS a continuous function, it is easy to
establish a direct procedure to obtain f,(y). A continuos
function g(x) with g'(x) nonzero at all but a finite number
of points, has only a finite number of maxima and minima,
and it eventually becomes monotonic as | x |- o«. Consider a
specific y on the y-axis, and a positive increment Ay as
shown in Fig. 5.4

AN

X, +AX, X,
Fig. 5.4

f,(y) for v =g(x), where g() is of continuous type. ,
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Using (3-28) we can write

P{y <Y (&) <y+Ay!= jyyw f,(Wdu~ f,(y)-Ay.  (5-26)

But the event {y <Y (&) <y+aAy} can be expressed in terms
of x(&) as well. To see this, referring back to Fig. 5.4, we
notice that the equation y=g(x) has three solutions X;, X, X;
(for the specific y chosen there). As a result

when {y <Y (&) < y + Ay}, the r.v X could be in any one of the
three mutually exclusive intervals

{X < X(&E) X+ A%}, {X, +AX, < X(&) <X} or {X;< X(&) < X, +AX}

Hence the probability of the event in (5-26) Is the sum of
the probability of the above three events, I.e.,
Ply <Y (&) < y+Ay}=P{x < X(&) < % +Ax}

+ P{X, + AX, < X (&) < X3+ P{X; < X (&) < X5 + Ax}.(5-27)
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For small Ay, Ax;, making use of the approximation in (5-26),
we get

fy (Y)AY = T, (%)AX + T, (X,)(=AX%,) + Ty (X5) AX,. (5-28)

In this case, Ax, >0, Ax,<0and Ax, >0, so that (5-28) can be
rewritten as

_ [A% ] _ 1
fy (y) = Z fy (X)) Ay Z‘Ay/AXi‘fx(Xi) (5-29)
and as Ay — 0, (5-29) can be expressed as
1 1
f,(y)= f, (X)= ,
0= 2 ayi6d %)= 25y
The summation index 1 in (5-30) depends on y, and for every
y the equation y = g(x,) must be solved to obtain the total

number of solutions at every y, and the actual solutions x,, x,,--

all in terms of y. 23
PILLAI

fy (%) (5-30)




Examples



For example, if Y =x? thenforall Y>0, X =—Y and %, =+Jy
represent the two solutions for each y. Notice that the
solutions X are all in terms of y so that the right side of (5-30)
is only a function of y. Referring back to the example Y =X’
(Example 5.2) here for each ¥ >0. there are two solutions
given by x=—Jy and % =+/y. ( f,(¥)=0 for ¥<0).

Moreover +y = X2
dy dy
— =2x sothat |—= = 2./
dx dX |y Y

and using (5-30) we get
(1
m(fx(ﬁﬂ L (Y),  y>0

0, otherwise,

fy (y) =1 (5-31)

which agrees with (5-14). e
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Example 5.5: Y:%. Find f,(y). (5-32)

Solution: Here for every y, x, =1/y Is the only solution, and

d_y:_iz sothat || = 12=y2,
dx X dx|.., 1/y
and substituting this into (5-30), we obtain
1 1 -
fy (y) = 7 fy (yj (5-33)

In particular, suppose X is a Cauchy r.v as in (3-39) with
parameter  So that

f, (X)= 2‘/”2, — 00 < X < 400, (5-34)
a +X
In that case from (5-33), Y =1/ X has the p.d.f
1 alr  Mla)lx Cw - i
") =y T Way ey Y G
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But (5-35) represents the p.d.f of a Cauchy r.v with
parameter 1/q. Thusif X ~C(«), then 1/ X~ C(1/a).

Example 5.6: Suppose f, (x)=2x/z°, 0<x<z, and Y =sin X.
Determine f, (y).

Solution: Since X has zero probability of falling outside the
Interval (0,7), y=sinx has zero probability of falling outside
the interval (0,1). Clearly f,(y)=0 outside this interval. For
any 0< vy <1, from Fig.5.6(b), the equation y =sinx has an
infinite number of solutions -+, X, X,, X,,---, where x, =sin™"y
IS the principal solution. Moreover, using the symmetry we
also get x, =7 —x, etc. Further,

g_y —cosX =+/1—sin?x = /1— y?

X

So that dy

dx

2

=4/1-V". 27
X=X, PILLAI




$ ()

Fig. 5.6

Using this in (5-30), we obtain for 0 <y <1,

— 1
fv (Y) — i_z_;o ﬂ 1:x (Xi ) (5-36)

But from Fig. 5.6(a), In ifﬁis case f,(x,)=f,(x,)=f,(x,)=--=0
(Except for f, (x,) and f, (x,)the rest are all zeros).

28
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Thus (Fig. 5.7)

fy (y) i

1 1 2X 2X =

f - = f f — 1 2 i
v (Y) ﬂ( x (X)) + x(Xz)) ﬂ(ﬂ_z + ﬂzj J
O<vy<l], — :

2 2
2(X, + 7 — %) Nt y = i
= =171y 5-37 ’ >y
7iN1-y { 0, otherwise. ( ) 1
Fig. 5.7

Example 5.7: Let Y =tan X where X~U(-xz/2,71/2).
Determine f, (y).

Solution: As x moves from (-z/2, z/2), y moves from (- oo, + ).
From Fig.5.8(b), the function vy = tan X IS oOne-to-one
for -z/2<x<z/2. Foranyy, x =tan™y Is the principal
solution. Further

dy dtanx

= =sec’x=1+tan*x=1+y”’
dx dx

29
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so that using (5-30)

1 1/ 7
f = fo(x,) = ,
Y (y) |dy/dX |X:X1 X ( 1) 1+ y2

— 00 < Y <+, (5-38)

which represents a Cauchy density function with parameter
equal to unity (Fig. 5.9).

A fX (X)

> X A
—l2 w2 fY(y)zl 2

Fig. 5.9

30
PILLAI




Functions of a discrete-type r.v

Suppose X Is a discrete-type r.v with
P(X =X) =Py X=Xy, X0 e Xoyoe (5-39)
and Y =g(X). Clearly Y is also of discrete-type, and
when x=x,, vy, =9(x), and for those YV,
P(Y =y)=P(X=X)=p;, Y=Y Yo Vi (5-40)
Example 5.8: Suppose X ~P(1), so that
P(X =k)=e*, k=012, (5-41)

Define Y = X?+1. Find the p.m.f of V.
Solution: X takes the values 0,1,2,---,k,--- sothatY only

takes the value1, 2,5 ... k? +1,--- and .
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P(Y =k*+1) =P(X =k)

so that for j=k*+1

. : AV .
P Y f— f— P X p— — 1 p— _i y j— 1’ 2’ 5, o o 0 y k2 1’ ) . (5-42)
Y= ( Vi ) e D! J +

32
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Example 5.3: Let

(X —c, X >c,
Y=g(X)=41 0, —c< X <,
\X+c, X < —cC.

33
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In this case
P(YY =0)=P(-c< X(&) <c)=F, (c)-F,(-c). (5-18)
For y>0, we have x>c, and Y (&) = X (&) —c So that

R (y)=P(Y (&) <y)=P(X(&)—-c<y)
=P(X(&)<y+c)=F,(y+c), y>O0. (5-19)
Similarly y <0, If x<—c, and Y (&) = X (&) +c S0 that

F(Y)=P{ (&) <y)=P(X(&)+c<y)

=P(X(&)<y-c)=F (y-c), y<Oo. (5-20)
Thus )

f.(y+c), y>0,

fy (y) =1[Fx (c) — K (—0)]o(y), (5-21)
| fy(y—c), y<O.

y g(X)/ $F () AR, (y)
¢ o S
_ : _/ - »

(a) (b) (c) 34
Fig. 5.2 PILLAI



Example 5.4: Half-wave rectifier

X, x>0,
Y =g(X); g(X)={ (5-22) by

0, x<0.
In this case /
> X

P(YY =0)=P(X(&)<0)=F,(0). (5-23)

Fig. 5.3
and for y >0, since Y = X,
R (y)=P(Y (§) < y)=P(X (&) < y)=F (¥). (5-24)
Thus
( fy (), y >0,

fy(y)=1F(0)o(y) y=0, = f,(Y)U(y)+F(0)o(y). (5-25)
0, y <0,

35
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