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4. Random variables (is nor random nor variable)

Basic notes:
events: sets of outcomes of the experiment;

in many experiments we are interested in some number associated
with the experiment:

random variable: function which associates a number with
experiment.

Examples:
number of voice calls N that exists at the switch at time t:
random variable which takes on integer values in (0,1, ..., o).
service time tg of voice call at the switch:

- random variable which takes on any real value (0, o).

Classification based on the nature of RV:
continuous: R € (—o0, 00)
discrete:N € {0,1,...},Z€ {...,—1,0,1, ... }.



4.1. Definitions (measure theoretic)

Definition: a real valued RV X is a mapping from () to ‘R such that:

fweQ:Xw)<x}eF (45)
e forall x € R;
Definition: an integer valued RV X is a mapping from (2 to X such that:

weQ:X(w)<x}eF (46)
e forallx € Z;
Note! in teletraffic and queuing theories:
* most RVs are time intervals, number of channels, packets etc.
* continuous: (0, 00), discrete: 0,1,....



We are often more interested in a some number associated with the
experiment rather than the outcome itself.

Example 1. The number of heads in tossing coin rather than the
sequence of heads/tails

A real-valued random variable X is a mapping
X:§->R

which associates the real number X(e) to each outcome e € S§.

The image of a random variable X
Sx={x€R| X(e) =x, e € S} (complete set of values X can take)

may be finite or countably infinite: discrete random variable : 0,1,....
uncountably infinite: continuous random variable : (0, )



4.1. Definitions Random Variable (classic)

 Example 2: The number of heads in three consecutive tossings
of a coin (head = h, tail=t (tail)) .

e X(e)
hhh 3
hht 2
hth 2
htt 1
thh 2
tht 1
tth 1
ttt 0
* Note!

e The values of X are “drawn”
by “drawing” e

e e represents a “lottery ticket”,
on which the value of X is written

* in teletraffic and queuing theories: most RVs are time intervals, number of

channels, packets etc.



4.2. Full descriptors(PDF, pdf, pmf)

Definition: the probability that a random variable X is not greater than
X:

Pr{X < x}= probability of the Event {X < x}
=function of x = Fy(x) with (-0 < x £ o)
is called probability (cumulative) distribution function (PDF, CDF) of X.

Definition: complementary (cumulative) probability distribution
function (CDF, CCDF)

e« FC(x)=Pr{X >x}=1-F(x) =G(x) (48)

Note: Not All Continuous Random Variables Have PDFs, e.g.
Cantor set

 https://blogs.ubc.ca/math105/continuous-random-
variables/the-pdf/
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4.3. Properties of PDF
For PDF the following properties holds:
* PDF F(x) is monotone and non-decreasing with:
F(—=0) =0, F(o) =1, 0<F(x) <1 (51)
foranya<b:

Prfa <X <b}=F()—F(a) (52)

right continuity: if F(x) is discontinuous at x = a, then:
F(a)=F(a—0)+Pr{X =a} (53)

If X is continuous: F(x) = f_xoof(y)dy

Definition: if X is a continuous RV, and F(x) is differentiable, then:

_dFx) _ . Pr{x<X<x+dx}
f(x) T odx dlplcr—r}o dx
is called probability density function (pdf).
* Xis discrete: F(x) = X< Pr{X =j} (54)

Note: if X is discrete RV it is often preferable to deal with pmf (probability
mass function) instead of PDF.



f(x)
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Lecture: Reminder of probability
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4.4. Discrete RVs

* Definition: Let the values that can be assumed by X be x,, k=0, 1, 2, .
* The distribution function will have the staircase

* The steps occur at each x, and have size P(X = x,).

)E:xtr-)
P(X=%,)
P(.x" x) 3
L_j; — e > X
xp ?—, II. xl x“

Fig. Adiscrete distribution function has a finite number of discontinuities. The
random variable has a nonzero probability only at the points of discontinuity.



4.4. Discrete RVs
CDF and pdf of discrete case

Fx(x) = PF{X < X} = |
Zij PF{X = ]} | IT;_ ’ ..17 ' |'_~ T
= 297:1 PT{X = Xj} u(x — Xj)

N i+
=)j=1 P (x)ulx — x;) .
,Where p(xj) is a shorthand for t T | _ I

Pr{X = x;) X

Note: accumulates

Fig. Discrete distribution and
density functions

up to x;, and not to N

13



4.4. Discrete RVs (pdf ) ! 1o T —————— 15(”“".“””0)
F

fx(x) = X(x) I |

PT{X _ x]}du(x Xj)

Pr{X = xj}c?(x — Xj)

fy (x)
Z 1p(x])6(x _x]) | ' pj
=p(x;) forj=1, .., N T [ T ‘ [ T
. i | :X

Q: what is pmf of a discrete RV: J

14



4.5. More Properties of pdf (continuous RV)
* pdf f(x) non-negative:

f(x) 20, x € (—0,00)  (55) ‘
* if f(x) is integrable then for any x; < x,:

Prix; <X < x3} = F(xp) — F(xq) _/\/'\/{\ X

_ (X2 X, X
— le(x)dx 172

Jix)

¢ Fy(x)= 7% fr (0)dx -

* integration to 1: ffooof(x)dx =1 (57)
Note: all these properties hold for pmf (you have to replace integral by sum).

Q: what does f(x) mean?
15



4.6. mixed RVs

Definition: X is a continuous RV, and F(x) is differentiable, and with
discontinuities at some discrete points:

The first term r.h.s are impulse components and the second is non-
impulse component

f () = ) pi8c— ) + Cx(®)
j=1

f_o:ofx(x)dx

= zij(x — Xj) +f Clx)dx =1 S F'xfx)
j=1 -

a, $X) a0 X) | g5 (x-, )
: . — P

7‘0 x’l xz..

16



4.7. notes on Full descriptors cntd.
In what follows we assume integer values for discrete RVs i.e. :
pj = Pr{X = j} (50)
Which is also called probability function (PF) or probability mass function
(pmf).

* Q: Xis a continuous RV with no jump, then P(x=x,)=0 or
* If weareignorant: p(x = xy) = fx(x)|Ax| since

P{x, < X (&) <%, +Ax}= [ £, (u)du = (%) AX

* jumps in the CDF correspond to points x for which P(X=x)>0

17



4.8. Parameters of RV

Basic notes:

Full descriptors (i.e.)

e continuous RV: PDF and pdf give all information regarding properties of RV;

e discrete RV: PDF and pdf(pmf) give all information regarding properties of
RV.

Why we need something else:

 problem 1: PDF, pdf and pmf are sometimes not easy to deal with;
 problem 2: sometimes it is hard to estimate from data;

e solution: use parameters (summaries) of RV.

What parameters (summaries):

*  mean;

* variance;

* skewness;

* excess (also known as excess kurtosis or simply kurtosis).



4.9. Mean
Definition: the mean of RV X is given by:

E|X] =Yy xip;, Elx] = ffooo xf(x)dx (58)

* mean E[X] of RV X is between max and min value of non-complex RV:

minx, < E[x] < max x,

k k (59)

e mean of the constant is constant:
Elc] =c (60)

* mean of RV multiplied by constant value is constant value multiplied by the
mean:

ElcX] = cE[X] (61)

* mean of constant and RV X is the mean of X and constant value:
Elc + X] = c + E[X] (62)
* Linearity of Expectation:

E[X; + -+ X,,] = E[X{] + -+ E[X,,]



4.9. Conditional Expectation

The expectation of the random variable X given that another random variable Y
takes the value Y =y is

E[X|Y =yl = [_ xfiyy (x, y)dx
obtained by using the conditional distribution of X.
E[X|Y = y] is a function of y.

By applying this function on the value of the random variable
Y one obtains a random variable E [X |Y ] (a function of the random variable Y ).

Properties of conditional expectation

E[X|Y]=E[X] if X and Y are independent
E[cX|Y]=cEI[X]|Y] C is constant
EX+Y|Z]=E[X|Z] +E[Y |Z]

Efg(Y)IY]=9(Y)

E[g(Y)X[Y]=9g(Y)E[X|Y]




4.10. Variance and standard deviation

Definition: the mean of the square of difference between RV X and its mean E[X]:

VIX] = E[(X — E[X])?] (63)
How to compute variance:
 assume that X is discrete, compute variance as:

V[X] = ZVn(X - E[X])zpn (64)

e assume that X is continuous, compute variance as:

= J_o(x = E[X)?f(x)dx (65)

* the another approach to compute variance:

VIX] = E[X*] — (E[X])*(66)

21



4.10 cntd. Properties of the variance:

 the variance of the constant value is O:
V[c] = E[(X — E[X])*] = E[(c — c)*] = E[0] = 0 (67)
* variance of RV multiplied by constant value:

V[cX] = E[(cX — cE[X])?] = E[c*(X — E[X])?] = c?V[X]
e variance of the constant value and RV X:

Vc+X]=E[((c+X)—E(c+E[X]D))*] =E[(c+X—(c+

(68)

22
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4.10 cntd. Properties of variance (summary):
e VIX{+ -+ X, =V[X]+-+V[X,]

only when the Xj
are independent

c VIX;+ -+ X,] = ijl Cov[Xi,Xj] always

Proof:

« V[X;+ -+ X,]
= E{X1,(X; — E(X))) Zho Xk — ECX))
= S5 S E{(% - E(X)) (% - EGR))
= 3=t Cov[X;, Xp| = TRy V(X)
+ Xie1 Xk=1 Cov (X, Xy)

Properties of covariance
 Cov|X,Y] = Covl|Y, X]
e CovlX+Y,Z] =Cov|X,Z] + Covl|Y, Z]

Lecture: Reminder of probability 23
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4.10 cntd. Conditional variance

Conditional variance

VIX|Y] = E[(X — E[X|Y])?|Y] Deviation with respect to the conditional

expectation

Conditional covariance
COV[X,Y|Z] = E[(X — E[X|Z](X — E[Y|Z])|Z]

Conditioning rules
E[X]=E[E[X[Y]]

(inner conditional expectation is a function of Y )

V[X] = E[VIX [Y ] + VIE [X Y]]
COV[X,Y] = E[COV[X, Y|Z] + COV[E[X|Z], E[Y|Z]

Lecture: Reminder of probability
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4.11. Other parameters: moments
Let us assume the following:

« Xbe RV (discrete or continuous);

e k€1l2 .. bethenatural number;

« Y =X*Kk=1,2,..,bethe set of random variables.
Definition: the mean of RVs Y can be computed as follows:
e assume X is a discrete RV:

E[Y] =XYvixfpi  (71)
e assume X is a continuous one.

ElY] = L x¥fr()dx  (72)

Note: for example, mean is obtained by setting k = 1.

25



Definition: (raw) moment of order k of RV X is the mean of RV X in power of k:
o= E[X*]  (73)
Definition: central moment (moment around the mean) of order k of RV X is
given by:
we = E[(X — E[XD*]  (74)
One can note that:
E[X] =o¢;, V[X] = 0[X] = pp = oz — o (75)



measures of shape:
Definition: skewness (the degree of symmetry
in the variable distribution)of RV is given by:

_ U3
SX = Gz 7O

N\ VAN AN

Negatively skewed distribution Normal distribution Positively skewed c.iistribution
or Skewed to the left Symmetrical or Skewed to the right
Skewness <0 Skewness = 0 Skewness >0

for unimodal (one peak), skewed to one side

(i.e. not symmetric ), If the bulk of the data is Beta(a=4.5,

at the left and the right tail is longer, we say that B=2)

the distribution is skewed right or positively skewed; 5';“-‘;"3”7(‘-‘55 =
+0.

and vice versa.

Q=M= OoNQQO = NM

Application: three bandit (robbing your money) with =========="""""~
the above distributions; the left distribution is the best
Machine in terms of maximizing your net profit



Uniform(min=-v3, max=v3)
kurtosis = 1.8, excess = -1.2

measures of shape:

Definition: excess (excess kurtosis
or just kurtosis) of RV is given by:

. Ha ‘
eX - (O-[X])4- (77) T M N = O = Moo e

the degree of tailedness in the variable distribution (Westfall 2014).

increasing kurtosis is associated with the “movement of probability mass from
the shoulders of a distribution into its center and tails.”

VANEERYAN N\

Platykurtic Normal Leptokurtic
distribution distribution distribution
i i i Fatter tails
Thinner tails Mesokurtic Kurtosis > 0
Kurtosis <0 distribution

Kurtosis = 0



4.12. Meaning of moments

Parameters meanings:
* measures of central tendency:

- mean: E[X] = Yv; xip;

- mode: value corresponding to the highest probability;

- median: value that equally separates weights of the distribution.
* measures of variability:

- variance: VIX] = E[(X — E[X])z]
- standard deviation: V[X]
- squared coefficient of variation(squared COV): k)Z( = ;/[Z]z

e other measures:
- skewness of distribution: skewness;
- excess of the mode: excess.
Note: not all parameters exist for a given distribution!
Pareto distribution has no mean whena <1
Pareto distribution has no variance when ae(1,2]

29
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5. System of RVs: jointly distributed RVs

Basic notes:

e sometimes it is required to investigate two or more RVs;

e we assume that RVs X and Y are defined on some probability
space.

e Capital letters (i.e. X, Y ) are random variables
and small letters (i.e. x, y are given constants)

Lecture: Reminder of probability
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5. System of RVs: jointly distributed RVs
Definition: joint probability distribution function (JPDF) of RVs X and Y is:

Fyy (x,y) =Pr{X <x,Y <y} (78)
For continuous RV., Let us define:
Fx(x) =PriX<x} F, () =Pr{¥ <y} XY€ER (79
Fy (x)and Fy (y) are called marginal PDFs.
Marginal PDF can be derived form JPDF:

marginalize=neutralize=summing up to 1
Fy (x) = 311_{{)10 Fxy (x,y) = Fxy (x, ) (80)

Fy (y) = 311_{{310 Fyy (x,y) = Fxy (o0,y)

Lecture: Reminder of probability
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/
//04

VAV Ay

A{/Z//

(a) The joint probability distribution and
(b) the joint distribution function.

Lecture: Reminder of probability
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Definition: ifFyy (x,y) is differentiable then the following
function:

2
fxy(x,y) = dxdy Fyy (x,¥)

=Prix<X<x+dx,y<Y <y+dy}

is called joint probability density function (jpdf).

Lecture: Reminder of probability

(81)
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Assume then that X and Y are discrete RVs.

Definition: joint probability mass function (Jpmf) of discrete RVs X and Y is:

fxy (6, y)=Pr{X = x,Y = y} (82)

Let us define:

fx() =PriX=x}  fy(y) =Pr{Yy =y} (83)
e these functions are called marginal probability mass functions (Mpmf).

Marginal pmfs can be derived from Jpmf:

LD =D @y, KO =) fuby) 84
Vy Vx

Lecture: Reminder of probability
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5.1. Conditional distributions and Mean (we saw Cond. Prob. Before)

Discret RV Definition: the following expression:

Pr{X=V)Y =y}
PTX|Y{-:y} = PTX|Y{- Iy} = fX|Y(-»Y) = fX|Y(- ly) = PF{Y = y}

» gives conditional PF of discrete RV X given thatY =v.

Conditional mean of RV X given Y =y can be obtained as:

EXIY = y] = ) x Prgyixly)

Vi
Continous RV Definition: the following expression:

_ fxy(x,y)
fX|Y(X|3’) = —fY(}’) '

« gives conditional pdf of continuous RV X given that Y = y.

Conditional mean of RV X given Y =y from the following expression:
EIX]Y = y] = J X fx|y dx

Lecture: Reminder of probability

(85)

(86)

(87)

(88)
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5.1. Conditional distributions and Mean (we saw Cond. Prob. Before)

Conditional CDF:
PriX < xY <y} Fxy(xy)
Pr{y < vy} Fy(y)

FXIY(XW) =Pr(X<x|Y <y) =

Conditional pdf:

T .0 _ fxy(x,y)
fay(xly) = lim fi(x|Y = y) = lim == Fy(x|Y ~ y) = )

Note:

0
fxiy(xly) # an(ny)

Since the condition in pdf is Y=y and the condition incdfisY <y

Lecture: Reminder of probability
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5.2. Dependence and independence of RVs
Definition: it is necessary and sufficient for two RVs X and Y to be independent:
Fxy(x,y) = Fx()Fy (y)
(89)
« Fyy(x,y) is the JPDF(=JCDF);
« Fx(x) and Fy(y) are PDFs (CDFs) of RV X and Y .

Definition: it is necessary and sufficient for two continuous RVs X and Y to be independent:

fxy(x,y) = fx(X) fy (y)

(90)
* fxy(x,y) is the jpdf;
* fx(x) and fy(y) are pdfs of RV X and Y .
Definition: itis necessary and sufficient for two discrete RVs X and Y to be independent:
Pxy(x,y) =pxy(X =xY =V)py(X =V,Y =y) o

- pxy (X, y) is the Jpmf;
* px(x)and py(y) are pmfs (discrete RV) or pdfs (continuous RV)) of RV X and Y .

Lecture: Reminder of probability
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5.3. Measure of dependence
Sometimes RVs are not independent:
« as a measure of dependence correlation moment (covariance) is used.

Definition: covariance of two RVs X and Y is defined as follows:
Kxy = cov(X,Y) = E[(X — E[XD(Y — E[Y])] (92)
 where from definition that Kyy = Kyy .

One can find the covariance using the following formulas:

* assume that RV X and Y are discrete:
Key = 22(’“ ~ EXD0; - EYDPrX =x,Y = y))
(93)
* assume that RV X and Y are continuous:

0 00 (94)
Kyy = f j (t = EIXDO: = ELY Dfiy (o y)doxdy

Lecture: Reminder of probability
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It is often easy to use to following expression :
Kyy = E[XY] — E[X]E[Y] (95)

Problem with covariance: can be arbitrary in (—, ):

* problem: hard to compare dependence between different pair of RVs;

» solution: use correlation coefficient to measure the dependence between RVs.

Definition: correlation coefficient of RVs X and Y is defined as follows:
Kxy

L — (96)
PXY = SIXIolY |
«if pyy # 0then RVs X and Y are dependent;
* Example: assume we are given RVs X and Y such that Y = aX + b:
Pxy =+1 a>0
Pxy = —1 a<0 57)

Lecture: Reminder of probability
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Very important note:

« pxv is the measure telling how close the dependence to linear.

Question: what conclusions can be made when pxy =07?

* RVs X and Y are not LINEARLY dependent;

*when Pyy = 0 is does not mean that they are independent.

| independent RV | dependent RV

uncorrelated RV | correlated R
Fig: Independent and uncorrelated RVs.

What pxy says to us:
‘Pxy F 0:two RVs are dependent;
* Pxy = 0:one can suggest that two RvVs MAY BE independent;

‘Pxy = +1 or Pxy = —1 :RVs X and Y are linearly dependent.

Lecture: Reminder of probability
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5.4. Expectations of Sum and product of correlated RVs

Mean:

* the mean of the product of two correlated RVs:
E[XY] = E[X]E[Y] + Kxy
« the mean of the product of two uncorrelated RVs:
E[XY] = E[X]E|Y]

Variance:

» the variance of the sum of two correlated RVs:

VIX + Y] = V[X] + V[Y] + 2Ky

* the variance of the sum of two uncorrelated RVs:

VIX+Y]=VI[X] + V[Y]

Lecture: Reminder of probability

(98)

(99)

(100)

(101)
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6. Pdf of Sum of independent RVs

Q: what is pdf of the sum of two RVs generally

We consider independent RVs X and Y with probability functions:

Py(x) = Pr{X = x}, P,(y) = Pr{Y =y} (102)

PMF of RV Z, Z=X+Y is defined as follows (i.e. convolution operation.)

Pr{Z = z} = Z Pr{X = k} Pr{Y = z — k) (103)

k=—o0
if X =k,then,Ztakeonz (Z =z)ifandonlyif ¥ =z — k.

If RVs X and Y are continuous: (104)
e Of 0= | fu = DR 0y = | filz - Dfi dx

Exercise: CDF of sum of 2 independent RVs :F,(z) = F,(2)Of(2)
= f+(3)OF,(2)

Lecture: Reminder of probability
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7. Indicator RVs

The indicator random variable | {A} associated with event A is defined as
1 if Aoccurs
| {A}= (7.1)
0 if Adoes not occur
Example: determine the expected number of heads in tossing a fair coin. sample space is

S={H,T}, with Pr{T}= Pr{H)=~.

Define the event H as the coin coming up heads,

We define an indicator random variable Xy associated with the event H, such that :

Xy counts the number of heads obtained in this flip, i.e. it is 1 if the coin comes up heads
and 0, otherwise.

We write
1 if Hoccurs

XH=|{H}=
0 if T occurs

Lecture: Reminder of probability
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7. Indicator RVs

The expected number of heads obtained in one flip of the coin is simply the expected value
of indicator variable Xy:

E[Xy] = E[I{H}]
= 1.Pr{H} + 0. Pr{T}
1 1 1
=1.(;)+0.(3) =3
Thus the expected number of heads obtained by one flip of a fair coin is 1/2.

Q: what is the difference between expected value and average case?
Does make sense to define average with one flip ?
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7. Indicator RVs

Lemma 7.1
Given a sample space S and an event A in the sample space S, let X, = I{A}.
Then
E[X4] = Pr{A}
Proof:
By the definition of an indicator random variable from equation (7.1) and
the definition of expected value, we have
E[X,] = E[I{A}]
= 1.Pr{A} + 0. Pr{4}
= Pr{4}
,where A denotes S - A, (i.e. the complement of A).

Thus the above lemma implies:
The expected value of an indicator random variable associated with an event A is equal to

the probability that A occurs.
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7. Indicator RVs

Although indicator random variables may seem cumbersome for an application
such as counting the expected number of heads on a flip of a single coin, they are
useful for analyzing situations in which we perform repeated random trials.
Example: compute the expected number of heads in n tossing of a coin.

Let X denotes the total number of heads in the n coin flips, so that

n
X == ZXL
i=1

we take the expectation of both sides

2
Lecture: Reminder of probability
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7. Indicator RVs

We can compute the expectation of a random variable having a binomial distribution from
equations

(o) =% G
and

r=oBin(n—1;p) =1

Lecture: Reminder of probability
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7. Indicator RVs

Let X~Bin(n; p), and q=1-p, By the definition of expectation, we have

Lecture: Reminder of probability
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7. Indicator RVs

Let X~Bin(n; p), and g=1-p Obtaining the same result using the linearity of expectation.
Let X; denotes the number of successes in the i th trial. Then

E[X;]=p.14+q.0=p

and by linearity of expectation, the expected number of successes for n trials is
n
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7. Indicator RVs

Example: Let X~Bin(n; p), and q=1-p calculate the variance of the distribution. Using
Var[X] = E[X?] — EZ[X].,

we have Var[X;] = E|X?| — E2[X;].

X; only takes on the values 0 and 1, we have Xl-2 = X;,

which implies E[Xlz] = E[X;] = p.

Hence, Var[X;] = p — p? = pq

To compute the variance of X, we take advantage of the independence of the n trials; thus,
n

S

i=1

Var[X] = Var

n

= Var[X;]
T

1=1

:ZPCI



Appendix: General Case: Let X;, X,, . . .X, be continuous random variables

i Their joint Cumulative Distribution Function, F(x;, x,, . . .x,) defines

the probability that simultaneously X, is less than x,, X, is less than x,,
and so on; that is

F(OX X, X ) =POX < N X, <X, (- X, <X)

i. The cumulative distribution functions F,(x;), F,(x5), . . .,F.(x,) of the
individual random variables are called their marginal distribution

function. For any i, F,(x;) is the probability that the random variable X,
does not exceed the specific value x;.

iii.  The random variables are independent if and only if

F(X11 X2""’Xk) = Fl(xl)Fz(Xz)“' Fk (Xk)
or equivalently

(%X, %) = 106) T,0%) -+ T (%)




