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4. Random variables (is nor random nor variable)
Basic notes:

• events: sets of outcomes of the experiment;
• in many experiments we are interested in some number associated 

with the experiment:
• random variable: function which associates a number with 

experiment.
Examples:

• number of voice calls N that exists at the switch at time t:
- random variable which takes on integer values in (0,1,… ,∞).
• service time ts of voice call at the switch:
- random variable which takes on any real value (0,∞).

Classification based on the nature of RV:
• continuous: R ∈ (−∞,∞)
• discrete:N ∈ 0,1,… , Z ∈ … ,−1,0,1,… .
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4.1. Definitions (measure theoretic)
Definition: a real valued RV X is a mapping from Ω to ℜ such that:

𝑤 ∈ Ω ∶ 𝑋 𝜔 ≤ 𝑥 ∈ ℱ (45)

• for all 𝑥 ∈ 𝑅;

Definition: an integer valued RV X is a mapping from Ω to ℵ such that:

𝑤 ∈ Ω ∶ 𝑋 𝜔 ≤ 𝑥 ∈ ℱ (46)

• for all 𝑥 ∈ 𝑍;

Note! in teletraffic and queuing theories:

• most RVs are time intervals, number of channels, packets etc.

• continuous: (0,∞), discrete: 0,1,….
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4.1. Definitions Random Variable (classic)
• We are often more interested in a some number associated with the 

experiment rather than the outcome itself.
• Example 1. The number of heads in tossing coin rather than the 

sequence of heads/tails

• The image of a random variable X
• 𝒮X = {x ∈ ℛ | X(e) = x, e ∈ 𝒮} (complete set of values X can take)

• may be finite or countably infinite: discrete random variable : 0,1,….
• uncountably infinite: continuous random variable : (0,∞)
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A real-valued random variable X is a mapping
X : 𝒮 → ℛ
which associates the real number X(e) to each outcome e ∈ 𝒮.



4.1. Definitions Random Variable (classic)
• Example 2: The number of heads in three consecutive tossings

of a coin (head = h, tail=t (tail)) .

• The values of X are “drawn”

by “drawing” e

• e represents a “lottery ticket”,

on which the value of X is written

• Note! 

• in teletraffic and queuing theories:  most RVs are time intervals, number of 
channels, packets etc.
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e X(e)
hhh 3
hht 2
hth 2
htt 1
thh 2
tht 1
tth 1
ttt 0



4.2. Full descriptors(PDF, pdf, pmf)

Definition: the probability that a random variable X is not greater than 
x:

Pr{𝑋 ≤ 𝑥}= probability of the Event 𝑋 ≤ 𝑥

=function of 𝑥 = 𝐹𝑋(𝑥) with (−∞ ≤ x ≤ ∞)

is called probability (cumulative) distribution function (PDF, CDF) of X.

Definition: complementary (cumulative) probability distribution 
function (CDF, CCDF)

• 𝐹𝐶 𝑥 = Pr 𝑋 > 𝑥 = 1 − 𝐹 𝑥 = 𝐺(𝑥) (48)

Note: Not All Continuous Random Variables Have PDFs , e.g. 
Cantor set

• https://blogs.ubc.ca/math105/continuous-random-
variables/the-pdf/
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4.3. Properties of PDF
For PDF the following properties holds:

• PDF F(x) is monotone and non-decreasing with:

𝐹 −∞ = 0, 𝐹 ∞ = 1, 0 ≤ 𝐹(𝑥) ≤ 1 (51)

• for any a < b:

Pr 𝑎 < 𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹 𝑎 (52)

• right continuity: if F(x) is discontinuous at x = a, then:

𝐹 𝑎 = 𝐹 𝑎 − 0 + Pr 𝑋 = 𝑎 (53)

• If X is continuous:        𝐹 𝑥 = ∞−׬
𝑥
𝑓 𝑦 𝑑𝑦

Definition: if X is a continuous RV, and F(x) is differentiable, then:

𝑓 𝑥 =
dF(x)

dx
= lim

𝑑𝑥→0

Pr{𝑥<𝑋≤𝑥+𝑑𝑥}

𝑑𝑥
is called probability density function (pdf).

• X is discrete:               𝐹 𝑥 = σ𝑗≤𝑥 Pr 𝑋 = 𝑗 (54)

Note: if X is discrete RV it is often preferable to deal with pmf (probability 
mass function) instead of PDF.
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In other words, the cumulative distribution 
function F(x) is given by the shaded area.

xx

f(x)

F(x)=P(X≤x)
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Fig.2-1

(a) The probability distribution and 

(b) (b) the distribution function of a discrete RV.



4.4. Discrete RVs

• Definition: Let the values that can be assumed by X be xk, k = 0, 1, 2, . . . 

• The distribution function will have the staircase

• The steps occur at each xk and have size P(X = xk).

Fig. A discrete distribution function has a finite number of discontinuities. The 

random variable has a nonzero probability only at the points of discontinuity.
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4.4. Discrete RVs

CDF and pdf of discrete case

FX(𝑥) = Pr 𝑋 ≤ 𝑥 =
σ𝑗≤𝑥 Pr 𝑋 = 𝑗

= σ𝑗=1
𝑁 𝑃𝑟 𝑋 = 𝑥𝑗 𝑢(𝑥 − 𝑥𝑗)

=σ𝑗=1
𝑁 𝑝(𝑥𝑗)𝑢(𝑥 − 𝑥𝑗)

,where 𝑝 𝑥𝑗 is a shorthand for

Pr 𝑋 = 𝑥𝑗

Note: accumulates 

up to xj , and not to N
Fig. Discrete distribution and 

density functions

𝑥
𝑥𝑗

𝑋

𝑋
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4.4. Discrete RVs (pdf ) !

𝑓𝑋(𝑥) =
𝐹𝑋(𝑥)

dx

= σ𝑗=1
𝑁 𝑃𝑟 𝑋 = 𝑥𝑗

d𝑢(𝑥−𝑥𝑗)

dx

=σ𝑗=1
𝑁 𝑃𝑟 𝑋 = 𝑥𝑗 𝛿(𝑥 − 𝑥𝑗)

=σ𝑗=1
𝑁 𝑝(𝑥𝑗)𝛿(𝑥 − 𝑥𝑗)

= 𝑝(𝑥𝑗) for j=1,  …, N

Q: what is pmf of a discrete RV:

)(xfX

X
jx

jp
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4.5. More Properties of pdf (continuous RV)

• pdf f(x) non-negative:

𝑓 𝑥 ≥ 0, 𝑥 ∈ (−∞,∞) (55)

• if f(x) is integrable then for any x1 < x2:

Pr x1 < 𝑋 ≤ x2 = 𝐹 x2 − 𝐹 x1

= x1׬
x2 𝑓 𝑥 𝑑𝑥

• 𝐹𝑋(x0)=׬−∞
x0 𝑓𝑋(x)dx

• integration to 1:  ׬−∞
∞
𝑓 𝑥 𝑑𝑥 = 1 (57)

Note: all these properties hold for pmf (you have to replace integral by sum).

Q: what does 𝑓 𝑥 mean?

)(xfX

x
1x 2x
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4.6. mixed RVs

Definition: X is a continuous RV, and F(x) is differentiable, and with 
discontinuities at some discrete points:

The first term r.h.s are impulse components and the second is non-
impulse component
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𝑓𝑋(𝑥) =෍

𝑗=1

𝑛

𝑝𝑗𝛿(𝑥 − 𝑥𝑗) + 𝒞𝑋(𝑥)

න
−∞

∞

𝑓𝑋 𝑥 𝑑𝑥

=෍

𝑗=1

𝑛

𝑝𝑗𝑈(𝑥 − 𝑥𝑗) + න
−∞

∞

𝒞 𝑥 𝑑𝑥 = 1



4.7. notes on Full descriptors cntd.

In what follows we assume integer values for discrete RVs  i.e. :

𝑝𝑗 = Pr 𝑋 = 𝑗 (50)

Which is also called probability function (PF) or probability mass function 
(pmf).

• Q: X is a continuous RV with no jump, then P(x=x0)=0 or

• If we are ignorant: 𝑝 𝑥 ≈ 𝑥0 = 𝑓𝑋 𝑥0 |∆𝑥| since 

• jumps in the CDF correspond to points x for which P(X=x)>0

  xxfduufxxXxP
xx

x
XX  



)()()( 000

0

0


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4.8. Parameters of RV
Basic notes:

Full descriptors (i.e.)

• continuous RV: PDF and pdf give all information regarding properties of RV;

• discrete RV: PDF and pdf(pmf) give all information regarding properties of 
RV.

Why we need something else:

• problem 1: PDF, pdf and pmf are sometimes not easy to deal with;

• problem 2: sometimes it is hard to estimate from data;

• solution: use parameters (summaries) of RV.

What parameters (summaries):

• mean;

• variance;

• skewness;

• excess (also known as excess kurtosis or simply kurtosis).
18



4.9. Mean

Definition: the mean of RV X is given by:

𝐸 𝑋 = σ∀𝑖 𝑥𝑖𝑝𝑖 , 𝐸 𝑥 = ∞−׬
∞
𝑥𝑓 𝑥 𝑑𝑥 (58)

• mean E[X] of RV X is between max and min value of non-complex RV:

𝑚𝑖𝑛 𝑥𝑘
𝑘

≤ 𝐸 𝑥 ≤ 𝑚𝑎𝑥 𝑥𝑘
𝑘

(59)

• mean of the constant is constant:

𝐸 𝑐 = 𝑐 (60)

• mean of RV multiplied by constant value is constant value multiplied by the 
mean:

𝐸 𝑐𝑋 = 𝑐𝐸[𝑋] (61)

• mean of constant and RV X is the mean of X and constant value:

𝐸 𝑐 + 𝑋 = 𝑐 + 𝐸[𝑋] (62)

• Linearity of Expectation:

E 𝑋1 +⋯+ 𝑋𝑛 = 𝐸 𝑋1 +⋯+ 𝐸 𝑋𝑛
19



4.9. Conditional Expectation

20

The expectation of the random variable X given that another random variable Y 

takes the value Y = y is

𝐸 𝑋|𝑌 = 𝑦 = ∞−׬
∞
𝑥𝑓𝑋|𝑌 𝑥, 𝑦 𝑑𝑥

obtained by using the conditional distribution of X.

𝐸 𝑋|𝑌 = 𝑦 is a function of y. 

By applying this function on the value of the random variable

Y one obtains a random variable E [X |Y ] (a function of the random variable Y ).

Properties of conditional expectation

E [X |Y ] = E[X] if X and Y are independent

E [c X |Y ] = c E [X |Y ] c is constant

E [X + Y |Z] = E [X |Z] + E [Y |Z]

E [g(Y )|Y ] = g(Y )

E [g(Y )X |Y ] = g(Y )E [X |Y ]



4.10. Variance and standard deviation

Definition: the mean of the square of difference between RV X and its mean E[X]:

V 𝑋 = 𝐸[(𝑋 − 𝐸[𝑋])2] (63)

How to compute variance:

• assume that X is discrete, compute variance as:

V 𝑋 = σ∀𝑛(𝑋 − 𝐸[𝑋])2𝑝𝑛 (64)

• assume that X is continuous, compute variance as:

V 𝑋 = ∞−׬
∞
(𝑥 − 𝐸[𝑋])2𝑓(𝑥)𝑑𝑥 (65)

• the another approach to compute variance:

V 𝑋 = 𝐸[𝑋2] − (𝐸[𝑋])2(66)
21



4.10 cntd. Properties of the variance:
• the variance of the constant value is 0:

V 𝑐 = 𝐸[ 𝑋 − 𝐸[𝑋])2 = 𝐸 𝑐 − 𝑐 2 = 𝐸 0 = 0 (67)

• variance of RV multiplied by constant value:

V 𝑐𝑋 = 𝐸 𝑐𝑋 − 𝑐𝐸[𝑋] 2 = 𝐸 𝑐2(𝑋 − 𝐸 𝑋 )2 = 𝑐2𝑉[𝑋] (68)

• variance of the constant value and RV X:

V 𝑐 + 𝑋 = 𝐸 (𝑐 + 𝑋) − 𝐸(𝑐 + 𝐸 𝑋 ) 2 = 𝐸[(𝑐 + 𝑋 − (𝑐 +

22
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4.10 cntd. Properties of variance (summary):

• 𝑉 𝑋1 +⋯+ 𝑋𝑛 = 𝑉 𝑋1 +⋯+ 𝑉 𝑋𝑛

• 𝑉 𝑋1 +⋯+ 𝑋𝑛 = σ𝑖,𝑗=1
𝑛 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗

Proof:

• 𝑉 𝑋1 +⋯+ 𝑋𝑛
= 𝐸 σ𝑗=1

𝑛 (𝑋𝑗 − 𝐸 𝑋𝑗 )σ𝑘=1
𝑛 (𝑋𝑘 − 𝐸 𝑋𝑘 )

= σ𝑗=1
𝑛 σ𝑘=1

𝑛 𝐸 𝑋𝑗 − 𝐸 𝑋𝑗 𝑋𝑘 − 𝐸 𝑋𝑘

= σ𝑗,𝑘=1
𝑛 𝐶𝑜𝑣 𝑋𝑗 , 𝑋𝑘 = σ𝑘=1

𝑛 𝑉 𝑋𝑘
+ σ𝑗=1

𝑛 σ𝑘=1
𝑛 𝐶𝑜𝑣(𝑋𝑗 , 𝑋𝑘)

Properties of covariance

• 𝐶𝑜𝑣 𝑋, 𝑌 = 𝐶𝑜𝑣 𝑌, 𝑋

• 𝐶𝑜𝑣 𝑋 + 𝑌, 𝑍 = 𝐶𝑜𝑣 𝑋, 𝑍 + 𝐶𝑜𝑣 𝑌, 𝑍

always

only when the Xi

are independent
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4.10 cntd. Conditional variance

Conditional variance

V 𝑋|𝑌 = 𝐸 (𝑋 − 𝐸 𝑋 𝑌] 2|𝑌 Deviation with respect to the conditional

expectation

Conditional covariance

COV 𝑋, 𝑌|𝑍 = 𝐸 (𝑋 − 𝐸 𝑋 𝑍] (𝑋 − 𝐸 𝑌 𝑍] |𝑍

Conditioning rules

E[X] = E[E [X |Y ]] (inner conditional expectation is a function of Y )

V[X] = E[V[X |Y ]] + V[E [X |Y ]]
COV 𝑋, 𝑌 = 𝐸[COV 𝑋, 𝑌|𝑍 + COV 𝐸[𝑋|𝑍 , 𝐸[𝑌|𝑍]



4.11. Other parameters: moments

Let us assume the following:

• X be RV (discrete or continuous);

• 𝑘 ∈ 1,2,… be the natural number;

• 𝑌 = 𝑋𝑘, 𝑘 = 1,2,… , be the set of random variables.

Definition: the mean of RVs Y can be computed as follows:

• assume X is a discrete RV:

𝐸 𝑌 = σ∀𝑖 𝑥𝑖
𝑘𝑝𝑖 (71)

• assume X is a continuous one.

𝐸 𝑌 = ∞−׬
∞
𝑥𝑘𝑓𝑋 𝑥 𝑑𝑥 (72)

Note: for example, mean is obtained by setting k = 1.

25



Definition: (raw) moment of order k of RV X is the mean of RV X in power of k:

∝𝑘= 𝐸[𝑋𝑘] (73)

Definition: central moment (moment around the mean) of order k of RV X is 
given by:

𝜇𝑘 = 𝐸[(𝑋 − 𝐸 𝑋 )𝑘] (74)

One can note that:

𝐸 𝑋 =∝1, 𝑉 𝑋 = 𝜎 𝑋 = 𝜇2 = ∝2 − ∝1
2 (75)
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measures of shape:

Definition: skewness (the degree of symmetry 

in the variable distribution)of RV is given by:

𝑠𝑋 =
𝜇3

(𝜎 𝑋 )3
(76)

for unimodal (one peak), skewed to one side 

(i.e. not symmetric ), If the bulk of the data is 

at the left and the right tail is longer, we say that

the distribution is skewed right or positively skewed;

and vice versa.

Application: three bandit (robbing your money) with

the above distributions; the left distribution is the best

Machine in terms of maximizing your net profit 27

Beta(α=4.5, 
β=2)
skewness = 
+0.5370

Normal distribution
Symmetrical
Skewness = 0

Negatively skewed distribution 
or Skewed to the left
Skewness <0

Positively skewed distribution
or Skewed to the right
Skewness > 0



measures of shape:
Definition: excess (excess kurtosis 

or just kurtosis) of RV is given by:

𝑒𝑋 =
𝜇4

(𝜎 𝑋 )4
(77)

the degree of tailedness in the variable distribution (Westfall 2014).

increasing kurtosis is associated with the “movement of probability mass from 
the shoulders of a distribution into its center and tails.”

28

Platykurtic
distribution
Thinner tails
Kurtosis <0

Normal 
distribution
Mesokurtic
distribution
Kurtosis = 0

Leptokurtic 
distribution
Fatter tails
Kurtosis > 0

Uniform(min=−√3, max=√3)
kurtosis = 1.8, excess = −1.2



4.12. Meaning of moments
Parameters meanings:
• measures of central tendency:

- mean: 𝐸 𝑋 = σ∀𝑖 𝑥𝑖𝑝𝑖
- mode: value corresponding to the highest probability;
- median: value that equally separates weights of the distribution.

• measures of variability:

- variance: V 𝑋 = 𝐸[(𝑋 − 𝐸[𝑋])2]

- standard deviation:     𝑉[𝑋]

- squared coefficient of variation(squared COV):    𝑘𝑋
2 =

𝑉 𝑋

𝐸[𝑋]2

• other measures:
- skewness of distribution: skewness;
- excess of the mode: excess.

Note: not all parameters exist for a given distribution!
Pareto distribution has no mean when 𝛼 ≤ 1
Pareto distribution has no variance when  𝛼𝜖(1,2]

29
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5. System of RVs: jointly distributed RVs

Basic notes:

• sometimes it is required to investigate two or more RVs;

• we assume that RVs X and Y are defined on some probability 
space.

• Capital letters (i.e. X, Y ) are random variables

and small letters (i.e. 𝑥,  𝑦 are given constants)

Lecture: Reminder of probability 31
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5. System of RVs: jointly distributed RVs

Definition: joint probability distribution function (JPDF) of RVs X and Y is:

(78)

For continuous RV.,   Let us define:

x, y ∈ R, (79)

𝐹𝑋 (𝑥)and 𝐹𝑌 (𝑦) are called marginal PDFs.

Marginal PDF can be derived form JPDF: 

marginalize=neutralize=summing up to 1

(80)

Lecture: Reminder of probability

𝐹𝑋𝑌 (𝑥, 𝑦) = 𝑃𝑟{𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦}

32

𝐹𝑋 (𝑥) = 𝑃𝑟{𝑋 ≤ 𝑥} 𝐹𝑌 (𝑦) = 𝑃𝑟{𝑌 ≤ 𝑦}

𝐹𝑋 (𝑥) = lim
𝑦→∞

𝐹𝑋𝑌 (𝑥, 𝑦) = 𝐹𝑋𝑌 (𝑥,∞)

𝐹𝑌 (𝑦) = lim
𝑥→∞

𝐹𝑋𝑌 (𝑥, 𝑦) = 𝐹𝑋𝑌 (∞, 𝑦)
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Lecture: Reminder of probability

(a) The joint probability distribution and 

(b) the joint distribution function.

33
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Definition: if𝐹𝑋𝑌 (𝑥, 𝑦) is differentiable then the following 
function:

(81)

is called joint probability density function (jpdf).

𝑓𝑋𝑌 𝑥, 𝑦 =
𝑑2

𝑑𝑥𝑑𝑦
𝐹𝑋𝑌 𝑥, 𝑦

= 𝑃𝑟{𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥, 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝑑𝑦}

Lecture: Reminder of probability
34
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Assume then that X and Y  are discrete RVs.

Definition: joint probability mass function (Jpmf) of discrete RVs X and Y is:

(82)

Let us define:

(83)

• these functions are called marginal probability mass functions (Mpmf).

Marginal pmfs can be derived from Jpmf:

(84)𝑓𝑥 𝑥 = ෍

∀𝑦

𝑓𝑋𝑌 𝑥, 𝑦 , 𝑓𝑌 𝑦 =෍

∀𝑥

𝑓𝑋𝑌 𝑥, 𝑦

Lecture: Reminder of probability

𝑓𝑌 𝑦 = Pr{𝑌 = 𝑦}𝑓𝑋 𝑥 = Pr{𝑋 = 𝑥}

𝑓𝑋𝑌 𝑥, 𝑦 =Pr{𝑋 = 𝑥, 𝑌 = 𝑦}
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رد، از جمله می توان جرم تک تک مولفه ها را بدست آو( یا تابع توزیع احتمال توأم) با داشتن تابع توزیع  توأم 
.ولی برعکس این موضوع درست نیست. تابع توزیع حاشیه ای

𝑃(𝑋به عبارت دیگر با داشتن  = 𝑥𝑖) و𝑃(𝑌 = 𝑦𝑗) نمی توان𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗) ،را بدست آورد
.ولی برعکس آن ممکن است

𝑃 𝑋 = 𝑥𝑖 =෍
𝑗
𝑃(𝑥𝑖 , 𝑦𝑗)

.توزیع کناری بدست می آید2البته اگر پیشامدها مستقل باشند، به راحتی توزیع توأم را از روی حاصلضرب 

.و میخواهیم سه باطری انتخاب کنیم{5=و خراب4=، کارکرده3=نو} : نوع باطری داریم3: مثال

𝑃 𝑖, 𝑗 = 𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 =?

𝑃 0,0 =

5
3
12
3

=
10

220

𝑃 0,1 =

4
1

5
2

12
3

=
40

220

پیشامدها ቊ
𝑋 =
𝑌 =

باطری برداشته شده نو باشد
باطری برداشته شده کارکرده باشد

داریم احتمال آنکه صفر باطری سالم سه باطری برمی
احتمال اینکه هر سه باطری. )و صفر باطری کارکرده باش

.(خراب باشد

.یک باطری کارکرده و دو تای دیگر خراب باشد
(صفر باطری سالم) 



j
i 𝒀 = 𝟎 𝒀 =1 𝒀 =2 𝒀 =3 𝑷(𝑿 = 𝒊)

𝑿 = 𝟎
10

220

40

220

30

220

4

220

84

220

𝑿 = 𝟏
30

220

60

220

18

220
0

108

220

𝑿 = 𝟐
15

220

12

220
0 0

27

220

𝑿 = 𝟑
1

220
0 0 0

1

220

𝑷(𝒀 = 𝒋)
56

220

112

220

48

220

4

220
1

pmf متغیرx با جمع سطری وpmf متغیرy دست می آیدو چون این اطلاعات از روی حاشیه ببا جمع ستونی
.می گویندyوxجدول بدست می آید، به آن ها توزیع های حاشیه ای ( کناره ها)ها 



𝑃:1نکته  𝑋 𝑌 = 𝑦توزیع احتمال است.

:مثالی از احتمال شرطی

෍
𝑥
𝑃 𝑋 𝑌 = 2 =

𝑃 0, 𝑦

𝑃 𝑌 = 2
+

𝑃 1, 𝑦

𝑃 𝑌 = 2
+

𝑃 2, 𝑦

𝑃 𝑌 = 2
+

𝑃 3, 𝑦

𝑃 𝑌 = 2
= 1

=

30
220
48
220

+

18
220
48
220

+
0

48
220

+
0

48
220

==
30

48
+
18

48
= 1

𝑃(𝑌:2نکته  = یک احتمال است و توزیع احتمال نیست، چون مقدار آن (2
48

220
.است

𝑃پس  𝑋 𝑌 = 𝑦توزیع احتمال است.

.توزیع های حاشیه ای یک خلاصه ای از یک توزیع توأم است: 3نکته 
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5.1. Conditional distributions and Mean (we saw Cond. Prob. Before)

Discret RV            Definition: the following expression:

, (85)

• gives conditional PF of discrete RV X given that Y = y.

Conditional mean of RV X given Y = y can be obtained as:

(86)

Continous RV Definition: the following expression:

, (87)

• gives conditional pdf of continuous RV X given that  𝑌 = 𝑦.

Conditional mean of RV X given Y = y from the following expression:

(88)

Lecture: Reminder of probability

E[X|Y = y] =෍

∀𝑖

𝑥𝑖 𝑃𝑟X|Y{x|y}

E X Y = y = න
−∞

∞

𝑥𝑓X|Y 𝑑𝑥

𝑓X|Y 𝑥|𝑦 =
𝑓XY 𝑥, 𝑦

𝑓Y 𝑦

𝑃𝑟X|Y . , 𝑦 = 𝑃𝑟X|Y . |𝑦 = 𝑓X|Y . , 𝑦 = 𝑓X|Y . |𝑦 =
Pr {X = ∀,Y = y}

Pr {Y = y}
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5.1. Conditional distributions and Mean (we saw Cond. Prob. Before)

Conditional CDF:

𝐹X|Y 𝑥|𝑦 = 𝑃𝑟 𝑋 ≤ 𝑥|𝑌 ≤ 𝑦 =
Pr {X ≤ x,Y ≤ y}

Pr {Y ≤ y}
=
𝐹X,Y 𝑥, 𝑦

𝐹Y 𝑦

Conditional pdf:

𝑓X|Y 𝑥|𝑦 = lim
∆𝑦→0

𝑓𝑋 𝑥|𝑌 ≈ 𝑦 = lim
∆𝑦→0

𝜕

𝜕𝑥
𝐹𝑋 𝑥|𝑌 ≈ 𝑦 =

𝑓X,Y 𝑥, 𝑦

𝑓Y 𝑦

Note:

𝑓X|Y 𝑥|𝑦 ≠
𝜕

𝜕𝑥
𝐹𝑋 𝑥|𝑦

Since the condition in pdf is Y=y and the condition in cdf is 𝑌 ≤ 𝑦

Lecture: Reminder of probability 40
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5.2. Dependence and independence of RVs

Definition: it is necessary and sufficient for two RVs X and Y to be independent:
𝐹𝑋𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦)

(89)

• 𝐹𝑋𝑌(𝑥, 𝑦) is the JPDF(=JCDF);

• 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are PDFs (CDFs) of RV X and Y .

Definition: it is necessary and sufficient for two continuous RVs X and Y to be independent:
𝑓𝑋𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦)

(90)

• 𝑓𝑋𝑌 𝑥, 𝑦 is the jpdf;

• 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) are pdfs of RV X and Y .

Definition: it is necessary and sufficient for two discrete RVs X and Y to be independent:
𝑝𝑋𝑌(𝑥, 𝑦) = 𝑝𝑋𝑌(𝑋 = 𝑥, 𝑌 = ∀)𝑝𝑌(𝑋 = ∀, 𝑌 = 𝑦)

(91)

• 𝑝𝑋𝑌(𝑥, 𝑦) is the Jpmf;

• 𝑝𝑋(𝑥)and 𝑝𝑌(𝑦) are pmfs (discrete RV) or pdfs (continuous RV)) of RV X and Y .
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5.3. Measure of dependence

Sometimes RVs are not independent:

• as a measure of dependence correlation moment (covariance) is used.

Definition: covariance of two RVs 𝑋 and 𝑌 is defined as follows:

𝐾𝑋𝑌 = 𝑐𝑜𝑣 𝑋, 𝑌 = 𝐸[(𝑋 − 𝐸 𝑋 )(𝑌 − 𝐸 𝑌 )] (92)

• where from definition that 𝐾𝑋𝑌 = 𝐾𝑌𝑋 .

One can find the covariance using the following formulas:

• assume that RV X and Y are discrete:

(93)

• assume that RV X and Y are continuous:

(94)

Lecture: Reminder of probability

𝐾𝑋𝑌 = ෍

𝑖

෍

𝑗

(𝑥𝑖 − 𝐸[𝑋])(𝑦𝑗 − 𝐸[𝑌 ])𝑃𝑟{𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗}

𝐾𝑋𝑌 = න
−∞

∞

න
−∞

∞

(𝑥𝑖 − 𝐸[𝑋])(𝑦𝑖 − 𝐸[𝑌 ])𝑓𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
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It is often easy to use to following expression :

𝐾𝑋𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸[𝑌] (95)

Problem with covariance: can be arbitrary in (−∞, ∞):

• problem: hard to compare dependence between different pair of RVs;

• solution: use correlation coefficient to measure the dependence between RVs.

Definition: correlation coefficient of RVs X and Y is defined as follows:

(96)

1 ≤ ρ𝑋𝑌 ≤ 1
• if ρ𝑋𝑌 ≠ 0 then RVs X and Y are dependent;

• Example: assume we are given RVs X and Y such that Y = aX + b:

ρ𝑋𝑌 =+1 a>0

ρ𝑋𝑌 = −1 a<0
(97)

Lecture: Reminder of probability

ρ𝑋𝑌 =
𝐾𝑋𝑌

σ[X]σ[Y ]
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Very important note:

• ρXY is the measure telling how close the dependence to linear.

Question: what conclusions can be made when ρXY = 0?

• RVs X and Y are not LINEARLY dependent;

• when ρ𝑋𝑌 = 0 is does not mean that they are independent.

independent RV dependent RV

uncorrelated RV correlated R

Fig: Independent and uncorrelated RVs.

What ρXY says to us:

•ρ𝑋𝑌 ≠ 0: two RVs are dependent;

• ρ𝑋𝑌 = 0 : one can suggest that two RVs MAY BE independent;

• ρ𝑋𝑌 = +1 or ρ𝑋𝑌 = −1 : RVs X and Y are linearly dependent.
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5.4. Expectations of Sum and product of correlated RVs

Mean:

• the mean of the product of two correlated RVs:

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌 + 𝐾𝑋𝑌 (98)

• the mean of the product of two uncorrelated RVs:

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌 (99)

Variance:

• the variance of the sum of two correlated RVs:

𝑉 𝑋 + 𝑌 = 𝑉 𝑋 + 𝑉 𝑌 + 2𝐾𝑋𝑌 (100)

• the variance of the sum of two uncorrelated RVs:

𝑉 𝑋 + 𝑌 = 𝑉 𝑋 + 𝑉 𝑌 (101)

Lecture: Reminder of probability 45



Perf Eval of Comp Systems

6. Pdf of Sum of independent RVs

Q: what is pdf of the sum of two RVs generally

We consider independent RVs X and Y  with probability functions:

𝑃𝑋 𝑥 = Pr 𝑋 = 𝑥 , 𝑃𝑌 𝑦 = Pr 𝑌 = 𝑦

PMF of RV Z, Z = X + Y  is defined as follows (i.e. convolution operation.)

(102)

(103)

• if 𝑋 = 𝑘, then, 𝑍 take on 𝑧 (𝑍 = 𝑧) if and only if 𝑌 = 𝑧 − 𝑘.

If RVs X and Y  are continuous: (104)

Lecture: Reminder of probability

Pr 𝑍 = 𝑧 = ෍

𝑘=−∞

Pr 𝑋 = 𝑘 Pr{𝑌 = 𝑧 − 𝑘}

𝑓𝑋 (𝑥)⨀𝑓𝑌 (𝑦) = න
−∞

∞

𝑓𝑋(𝑧 − 𝑦)𝑓𝑌 (𝑦)𝑑𝑦 = න
−∞

∞

𝑓𝑌(𝑧 − 𝑥)𝑓𝑋 (𝑥)𝑑𝑥

Exercise:  CDF of sum of 2 independent RVs :𝑭𝒛 𝔃 = 𝑭𝒙 𝔃 ⨀𝒇𝒚 𝔃
= 𝒇𝒙 𝔃 ⨀𝑭𝒚 𝔃
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7. Indicator RVs
The indicator random variable I {A} associated with event A is defined as

I {A}=ቐ

1 𝑖𝑓 𝐴 𝑜𝑐𝑐𝑢𝑟𝑠

0 𝑖𝑓 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟
(7.1)

Example: determine the expected number of heads in tossing a fair coin. sample space is 

S={H,T}, with Pr{T}= Pr{H}= 
1

2
. 

Define the event H as the coin coming up heads, 
We define an indicator random variable 𝑋𝐻 associated with the event H , such that :
𝑋𝐻 counts the number of heads obtained in this flip, i.e. it is 1 if the coin comes up heads 
and 0 , otherwise. 
We write

𝑋𝐻=I{H}=ቐ

1 𝑖𝑓 𝐻 𝑜𝑐𝑐𝑢𝑟𝑠

0 𝑖𝑓 𝑇 𝑜𝑐𝑐𝑢𝑟𝑠
.

Lecture: Reminder of probability 47



Perf Eval of Comp Systems

7. Indicator RVs
The expected number of heads obtained in one flip of the coin is simply the expected value 
of indicator variable 𝑋𝐻:

𝐸[𝑋𝐻] = 𝐸[𝐼 𝐻 ]

= 1. Pr 𝐻 + 0. Pr{𝑇}

= 1.
1

2
+ 0.

1

2
=

1

2

Thus the expected number of heads obtained by one flip of a fair coin is 1/2.

Q: what is the difference between expected value and average case?
Does make sense to define average with one flip ?
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7. Indicator RVs
Lemma 7.1
Given a sample space S and an event A in the sample space S, let 𝑋𝐴 = 𝐼 𝐴 .
Then 

𝐸[𝑋𝐴] = 𝑃𝑟 𝐴
Proof:
By the definition of an indicator random variable from equation (7.1) and

the definition of expected value, we have
𝐸[𝑋𝐴] = 𝐸[𝐼 𝐴 ]
= 1. Pr 𝐴 + 0. Pr{ ҧ𝐴}
= Pr 𝐴

,where ҧ𝐴 denotes S - A, (i.e. the complement of A).

Thus the above lemma implies:
The expected value of an indicator random variable associated with an event A is equal to 
the probability that A occurs.
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7. Indicator RVs
Although indicator random variables may seem cumbersome for an application
such as counting the expected number of heads on a flip of a single coin, they are
useful for analyzing situations in which we perform repeated random trials.
Example: compute the expected number of heads in n tossing of a coin. 
Let X denotes the total number of heads in the n coin flips, so that

𝑋 =෍

𝑖=1

𝑛

𝑋𝑖

we take the expectation of both sides

𝐸[𝑋] = 𝐸 ෍

𝑖=1

𝑛

𝑋𝑖

=෍

𝑖=1

𝑛

𝐸[𝑋𝑖]

=෍

𝑖=1

𝑛
1

2

=
𝑛

2
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7. Indicator RVs
We can compute the expectation of a random variable having a binomial distribution from 
equations 

𝑛
𝑘

=
𝑛

𝑘

𝑛−1
𝑘−1

and

σ𝑘=0
𝑛 𝐵𝑖𝑛(𝑛 − 1; 𝑝) = 1.
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7. Indicator RVs
Let X~Bin(n; p), and q=1-p,   By the definition of expectation, we have

𝐸[𝑋] = ෍

𝑘=0

𝑛

𝑘. Pr{𝑋 = 𝑥}

= ෍

𝑘=0

𝑛

𝑘. 𝐵𝑖𝑛(𝑛; 𝑝)

= ෍

𝑘=0

𝑛

𝑘
𝑛

𝑘
𝑝𝑘𝑞𝑛−𝑘

= 𝑛𝑝෍

𝑘=0

𝑛
𝑛 − 1

𝑘 − 1
𝑝𝑘−1𝑞𝑛−𝑘

= 𝑛𝑝෍

𝑘=0

𝑛
𝑛 − 1

𝑘
𝑝𝑘𝑞 𝑛−1 −𝑘

= 𝑛𝑝෍

𝑘=0

𝑛

𝐵𝑖𝑛(𝑛 − 1; 𝑝)

= 𝑛𝑝
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7. Indicator RVs
Let X~Bin(n; p), and q=1-p Obtaining the same result using the linearity of expectation.
Let 𝑋𝑖 denotes the number of successes in the i th trial. Then 

𝐸 𝑋𝑖 = 𝑝. 1 + 𝑞. 0 = 𝑝

and by linearity of expectation, the expected number of successes for n trials is

𝐸[𝑋] = 𝐸 ෍

𝑖=1

𝑛

𝑋𝑖

=෍

𝑖=1

𝑛

𝐸[𝑋𝑖]

=෍

𝑖=1

𝑛

𝑝

= 𝑛𝑝
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7. Indicator RVs
Example: Let X~Bin(n; p), and q=1-p calculate the variance of the distribution. Using

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋2 − 𝐸2[𝑋]., 

we have 𝑉𝑎𝑟 𝑋𝑖 = 𝐸 𝑋𝑖
2 − 𝐸2[𝑋𝑖]. 

𝑋𝑖 only takes on the values 0 and 1, we have 𝑋𝑖
2 = 𝑋𝑖, 

which implies 𝐸 𝑋𝑖
2 = 𝐸 𝑋𝑖 = 𝑝. 

Hence, 𝑉𝑎𝑟 𝑋𝑖 = 𝑝 − 𝑝2 = 𝑝𝑞
To compute the variance of X, we take advantage of the independence of the n trials; thus, 

𝑉𝑎𝑟[𝑋] = 𝑉𝑎𝑟 ෍

𝑖=1

𝑛

𝑋𝑖

=෍

𝑖=1

𝑛

𝑉𝑎𝑟[𝑋𝑖]

= ෍

𝑖=1

𝑛

𝑝𝑞

= 𝑛𝑝𝑞
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Joint Cumulative Distribution Functions
Appendix: General Case: Let X1, X2, . . .Xk be continuous random variables

i. Their joint Cumulative Distribution Function, F(x1, x2, . . .xk) defines 
the probability that simultaneously X1 is less than x1, X2 is less than x2, 
and so on; that is

i. The cumulative distribution functions F1(x1), F2(x2), . . .,Fk(xk) of the 
individual random variables are called their marginal distribution 
function. For any i, Fi(xi) is the probability that the random variable Xi

does not exceed the specific value xi.

iii. The random variables are independent if and only if
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